

# **Global Education of Science**

| Subject: MathematStandard: 10,9Total Mark: 480                                                                                                                                       | ics, Science MCQ ar                                                                                             | nd MCQ                                                                          | Paper S<br>Date<br>Time                             | et : 1<br>: 26-07-2024<br>: 0H:20M                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|
| Mathema                                                                                                                                                                              | tics - Section A (MCQ)                                                                                          | both Asha and Nisha. (<br>(A) $4,27$                                            | (in <i>year</i> )<br>(B) 9,                         | 22                                                              |
| (1) Solve the equation                                                                                                                                                               | $x^2 - 8x - 21 = 0$ using the formula.                                                                          | (C) 6,28                                                                        | (D) 5,                                              | 27                                                              |
| (A) $4 - \sqrt{37}$ and $4 - \sqrt{37}$                                                                                                                                              | $-\sqrt{37}$ (B) $4 + \sqrt{37}$ and $4 + \sqrt{37}$                                                            | (10) The first term of an A.                                                    | P. is denoted                                       | by                                                              |
| (C) $-4+\sqrt{37}$ and                                                                                                                                                               | $-4-\sqrt{37}$ (D) $4+\sqrt{37}$ and $4-\sqrt{37}$                                                              | (A) d                                                                           | <b>(B)</b> <i>a</i>                                 |                                                                 |
| (2) The two triangles ir                                                                                                                                                             | n the figure are congruent using                                                                                | (C) <i>l</i>                                                                    | (D) n                                               |                                                                 |
| congruence theorem. Here, it is given $OQ = OR$ . Which of these conditions alongwith the given condition is sufficient to prove that the two triangles are congruent to each other? |                                                                                                                 | (11) The sum of the zeros c<br>(A) 7<br>(C) 12                                  | of $x^2 + 7x + 1$<br>(B) -7<br>(D) -3               | 2 is<br>7<br>12                                                 |
|                                                                                                                                                                                      |                                                                                                                 | (12) For an <i>A.P.</i> , the first te<br>Then, the sum of first 1              | erm is 10 and 1<br>10 terms is                      | the $10^{th}$ term is $100$ .                                   |
|                                                                                                                                                                                      |                                                                                                                 | (A) 500                                                                         | <b>(B)</b> 55                                       | 00                                                              |
| R S                                                                                                                                                                                  |                                                                                                                 | (C) 5000                                                                        | <b>(D)</b> 55                                       | 0                                                               |
| (A) $\angle P = \angle S$                                                                                                                                                            | (B) $\angle Q = \angle R$                                                                                       | (13) $\ln \Delta ABC, m \angle B = 90$                                          | and $\overline{BM}$ is an                           | altitude. If $AM = 12$                                          |
| (C) $OP = OS$                                                                                                                                                                        | (D) $PQ = SR$                                                                                                   | (A) 36                                                                          | $u = \dots \dots$ (B) 6                             |                                                                 |
| (3) A train, travelling at taken 48 min less t                                                                                                                                       | t a uniform speed for $360  km$ , would have o travel the same distance, if its speed                           | (C) 7.5                                                                         | (D) 9                                               |                                                                 |
| were $5 km/h$ more.                                                                                                                                                                  | Find the original speed of the train. (in                                                                       | (14) is not a quadratic e                                                       | equation.                                           |                                                                 |
| km/h)                                                                                                                                                                                |                                                                                                                 | (A) $x(3x+7) = (x+1)$                                                           | (x-1)                                               |                                                                 |
| <b>(A)</b> 54                                                                                                                                                                        | <b>(B)</b> 45                                                                                                   | (B) $x^2 - 2x + 1 = 0$                                                          |                                                     |                                                                 |
| <b>(C)</b> 50                                                                                                                                                                        | (D) 55                                                                                                          | (C) $2x(3x-5) + 1 = 3$                                                          | 3x(2x+5)+3                                          | }                                                               |
| (4) In $\Delta MNP, \overline{MX}$ is a $MX = 3$ , then $NP$                                                                                                                         | a median. If $MN^2 + MP^2 = 50$ and $P = \dots$                                                                 | (D) $4 - 3x - 2x^2 = 0$                                                         |                                                     | ,<br>,                                                          |
| (A) 8                                                                                                                                                                                | <b>(B)</b> 16                                                                                                   | (15) Find the roots of the fo                                                   | ollowing quad                                       | ratic equations by using                                        |
| (C) 32                                                                                                                                                                               | (D) 4                                                                                                           | the general formula fo<br>$2u^2 + 5u - 3 = 0$                                   | r the roots, if                                     | they exist :                                                    |
| (5) If the following qua                                                                                                                                                             | adratic equations has two equal and real value of $h: h\pi^2 = 2\sqrt{5}\pi + 4 = 0$                            | (A) $\frac{1}{2}$ and $-3$                                                      | (B) 1/7                                             | and 9                                                           |
| (A) $\frac{5}{4}$                                                                                                                                                                    | (B) $\frac{15}{2}$                                                                                              | (C) $\frac{1}{2}$ and $\frac{1}{2}$                                             | (D) $\frac{3}{2}$                                   | and 6                                                           |
| (C) $\frac{4}{4}$                                                                                                                                                                    | (D) $\frac{10}{2}$                                                                                              | (16) $\sqrt{7+2\sqrt{5}}$ -                                                     | 2                                                   |                                                                 |
| (6) If a pair of equation                                                                                                                                                            | $x = y - \frac{3}{3}$<br>is $3x + ky - 9 = 0$ and $x + 2y - 3 = 0$ has                                          | (A) does not exist as a<br>binomial surd                                        | (B) √(                                              | $\bar{5} + 1$                                                   |
| (A) -2                                                                                                                                                                               | (B) 2                                                                                                           | (C) $\sqrt{6} - 1$                                                              | (D) √                                               | $\bar{7} + \sqrt{5}$                                            |
| (C) 6                                                                                                                                                                                | <b>(D)</b> -6                                                                                                   | (17) In a two—digit numbe                                                       | r, the digit at i                                   | unit's place is $x$ and the                                     |
| (7) The number of the                                                                                                                                                                | zeros of $p(x) = x^2 - 9$ is                                                                                    | digit at ten's place is y                                                       | . then the nun                                      | nber is                                                         |
| (A) 2                                                                                                                                                                                | (B) 3                                                                                                           | (A) $10x + y$                                                                   | <b>(B)</b> x -                                      | +y                                                              |
| (C) 4                                                                                                                                                                                | <b>(D)</b> 9                                                                                                    | (C) $10(x+y)$                                                                   | <b>(D)</b> 10                                       | y + x                                                           |
| (8) $\Delta ABC \sim \Delta PQR$ 1<br>AB: PQ = 3: 4 ar<br>perimeter of $\Delta AB$                                                                                                   | for the correspondence $ABC \leftrightarrow PQR$ . If<br>nd the perimeter of $\Delta PQR$ is 24, find the<br>C. | (18) The product of the dig<br>number obtained by ir<br>the original number. Fi | its of a two-d<br>nterchanging t<br>ind the origina | igit number is $14$ . The he digits is $45$ more tha al number. |
| (A) 15                                                                                                                                                                               | <b>(B)</b> 18                                                                                                   | <b>(A)</b> 11                                                                   | <b>(B)</b> 13                                       |                                                                 |
| (C) 20                                                                                                                                                                               | <b>(D)</b> 25                                                                                                   | (C) 32                                                                          | (D) 27                                              |                                                                 |
| (9) At present Asha's a<br>her daughter Nisha                                                                                                                                        | ge (in <i>years</i> ) is 2 more than the square of<br>'s age. When Nisha grows to her mother's                  | (19) The sum of the zeros of $p(x) = x^2 + 3x + 2$ is                           | of a quadratic                                      | polynomial                                                      |

present age, Asha's age would be one year less than 10

times the present age of Nisha. Find the present ages of

| Paper Set | : 1          |
|-----------|--------------|
| Date      | : 26-07-2024 |
| Time      | : 0H:20M     |

| <b>(B)</b> −2          |
|------------------------|
| <b>(</b> D <b>)</b> −3 |

(A) 2

(C) 3

| (20)   | $ \begin{array}{l} \ln\Delta PQR, m \angle Q = 90 \text{ and } T \\ PQ = 6 \text{ and } QR = 8 \text{, then } Q \end{array} $ | is the midpoint of $\overline{PR}$ . If $T = \dots$                                   | (   |
|--------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|
|        | (A) 12                                                                                                                        | <b>(B)</b> 9                                                                          |     |
|        | <b>(C)</b> 10                                                                                                                 | (D) 5                                                                                 |     |
| (21)   | $\dots \dots $          | <b>(D)</b> 0.00,000,0000                                                              |     |
|        | (A) $3, 3, 3, 3, \ldots$                                                                                                      | (B) 2, 22, 222, 2222,                                                                 | (   |
| (2.2.) | (C) $5, 15, 25, 35, \ldots$                                                                                                   | (D) $4, -4, 4, -4, \dots$                                                             |     |
| (22)   | Find whether the following e mots exist, find them.<br>$x^2 + 5\sqrt{5}x - 70 = 0$                                            | quations have real roots. If real                                                     |     |
|        | (A) $3\sqrt{5} - 5\sqrt{7}$                                                                                                   | (B) $2\sqrt{3} - 7\sqrt{3}$                                                           | (   |
|        | (C) $2\sqrt{5} - 7\sqrt{5}$                                                                                                   | (D) $2\sqrt{7} - 7\sqrt{7}$                                                           |     |
| (23)   | $\ln \Delta ABC, m \angle B = 90. \text{ If } a =$                                                                            | 16  and  c = 12, then                                                                 |     |
|        | $b = \dots$ (A) 8                                                                                                             | <b>(B)</b> 18                                                                         | (   |
|        | (C) 20                                                                                                                        | (D) 28                                                                                |     |
| (24)   | The $20^{th}$ term of the A.P. 2.                                                                                             | $-2, -6, -10, \dots$ is                                                               |     |
| (= -)  | (A) -74                                                                                                                       | (B) 20                                                                                |     |
|        | (C) 22                                                                                                                        | <b>(D)</b> 74                                                                         |     |
| (25)   | are not the measures of s                                                                                                     | ides of a right angled triangle.                                                      |     |
|        | <b>(A)</b> 5, 12, 13                                                                                                          | <b>(B)</b> 3, 4, 5                                                                    |     |
|        | <b>(C)</b> 7,24,25                                                                                                            | <b>(D)</b> 8, 24, 26                                                                  |     |
| (26)   | the zero of $p(x) = x^2 + 6x + $                                                                                              | 9 is                                                                                  |     |
|        | (A) 3                                                                                                                         | <b>(B)</b> −3                                                                         |     |
|        | (C) $3 \text{ and } -3 \text{ are the zeros of}$                                                                              | (D) 9 is the zero of                                                                  |     |
| (27)   | $\Delta PQR \sim \Delta XYZ$ for the contrast The perimeter of $\Delta PQR$ is 2 is 60. If $PR = 10$ , find $XZ$ .            | rrespondence $PQR \leftrightarrow XYZ$ .<br>4 and the perimeter of $\Delta XYZ$       | 2   |
|        | (A) 25                                                                                                                        | <b>(B)</b> 30                                                                         | (   |
|        | (C) 35                                                                                                                        | (D) 40                                                                                |     |
| (28)   | In $\triangle ABC$ and $\triangle PQR, \angle A \cong$<br>correspondence $ABC \leftrightarrow \dots$<br>(A) $PRQ$             | $\angle P$ and $\angle B \cong \angle R$ . Then, the<br>is a similarity.<br>(B) $PQR$ | (   |
|        | $(\mathbf{C}) \ BPO$                                                                                                          | (D) $BOP$                                                                             |     |
| (29)   | In pair of equations $a_1x + b_1y$                                                                                            | $y + c_1 = 0$ and                                                                     |     |
| ()     | $a_2x + b_2y + c_2 = 0$ ifthe<br>(A) $a_1b_2 \neq a_2b_1$                                                                     | n it has unique solution.<br>(B) $a_1b_2 = b_1a_2$                                    | (   |
|        | (C) $b_1c_2 = c_1b_2$                                                                                                         | (D) $c_1 a_2 = a_1 c_2$                                                               |     |
| (30)   | The solution of $x + y - 1 = 0$                                                                                               | ) and $2x + 2y - 2 = 0$ is                                                            |     |
|        | <b>(A)</b> {(1,0)}                                                                                                            | <b>(B)</b> {(0,1)}                                                                    | ••• |
|        | (C) an infinite set                                                                                                           | (D) an empty set                                                                      | (   |
| (31)   | If $x + 1$ is a factor of $ax^3 + x^3$                                                                                        | $a^2 - 2x + 4a - 9$ , find the value                                                  |     |
|        | (A) -1                                                                                                                        | <b>(B)</b> 0                                                                          |     |
|        | (C) -2                                                                                                                        | (D) 2                                                                                 |     |
| (32)   | Without actually calculating t<br>each of the following<br>$(21)^3 + (15)^3 + (-36)^3$                                        | the cubes, find the value of                                                          | (   |
|        | (A) 61280                                                                                                                     | <b>(B)</b> -34020                                                                     | (   |
|        | <b>(C)</b> 65041                                                                                                              | <b>(D)</b> -53120                                                                     | ``  |
| (33)   | Find the value of $k$ , if $x - 1$ is                                                                                         | a factor of $p(x)$ in this case :                                                     |     |
|        | $p(x) = x^2 + x + k.$                                                                                                         |                                                                                       | ,   |
|        | (A) 0                                                                                                                         | (B) 3                                                                                 | (   |
|        | (C) 2                                                                                                                         | (D) -2                                                                                |     |

| (34)   | With the help of the remaind<br>when the polynomial $x^3 + x^2$<br>of the following divisors | er theorem, find the remainder $a^2-26x+24$ is divided by each |
|--------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|        | x+6                                                                                          | <b>(D)</b> 0                                                   |
|        | (A) 12                                                                                       | (D) 0                                                          |
| (25)   | (C) $0$                                                                                      | (D) 3                                                          |
| (35)   | plane, then, is possible.                                                                    | ne same point in the coordinate                                |
|        | (A) $a = 2, b = -2$                                                                          | (B) $a = -2, b = -2$                                           |
|        | (C) $a = -2, b = 2$                                                                          | (D) $a = 2, b = \frac{1}{2}$                                   |
| (36)   | Evaluate                                                                                     |                                                                |
|        | $205 \times 195$                                                                             | ( <b>P</b> ) 30075                                             |
|        | (A) <u>39136</u>                                                                             | (D) 09511                                                      |
| (27)   | (C) 48974                                                                                    | (D) 93541                                                      |
| (37)   | In $Fig.$ , coordinates of $P$ are                                                           |                                                                |
|        | P 4 3                                                                                        |                                                                |
|        | 2                                                                                            |                                                                |
|        |                                                                                              |                                                                |
|        | <                                                                                            | $\rightarrow$ X                                                |
|        | -4 - 3 - 2 - 1 - 1 2                                                                         | 3 4                                                            |
|        | 2                                                                                            |                                                                |
|        | 3                                                                                            |                                                                |
|        | 4                                                                                            |                                                                |
|        |                                                                                              |                                                                |
|        | (A) $(-4,2)$                                                                                 | (B) $(4, -2)$                                                  |
|        | (C) (2, -4)                                                                                  | (D) $(-2,4)$                                                   |
| (38)   | The linear equation $2x - 5y =$                                                              | = 7 has                                                        |
|        | (A) A unique solution                                                                        |                                                                |
| (      | (C) No solution                                                                              | (D) Infinitely many solutions                                  |
| (39)   | Degree of the polynomial $4x^2$                                                              | $(x^{4} + 0x^{3} + 0x^{5} + 5x + 7)$ is                        |
|        | (A) 7                                                                                        | (B) 3                                                          |
|        | (C) 5                                                                                        | (D) 4                                                          |
| (40)   | $2\sqrt{3} + \sqrt{3}$ is equal to                                                           |                                                                |
|        | (A) $2\sqrt{6}$                                                                              | (B) 6                                                          |
|        | (C) $3\sqrt{3}$                                                                              | (D) $4\sqrt{6}$                                                |
|        | Mathematics - S                                                                              | Section B (мсq)                                                |
| (41)   | Find the remainder when $x^3$                                                                | $+3x^2+3x+1$ is divided by                                     |
| . ,    | x + 1                                                                                        | -                                                              |
|        | (A) 0                                                                                        | (B) 3                                                          |
|        | (C) 8                                                                                        | (D) 2                                                          |
| (42)   | If $x^2 + kx + 6 = (x+2)(x+3)$                                                               | B) for all $x$ , then the value of $k$ is                      |
|        | (A) 5                                                                                        | <b>(B)</b> 1                                                   |
|        | <b>(C)</b> −1                                                                                | (D) 3                                                          |
| (43)   | The line joining ${\cal A}(3,-8)$ and                                                        | $B(3,5)$ intersects the $\boldsymbol{x}$ -axis at              |
|        | (A) (0, 3)                                                                                   | <b>(B)</b> (0, 5)                                              |
|        | (0, 0)                                                                                       | (D) $(0,0)$                                                    |
| ( 1 1) | (C) $(-8, 0)$                                                                                | (D) $(3,0)$                                                    |
| (44)   | Reliable the denominator $\frac{2+\sqrt{3}}{2-\sqrt{3}}$                                     | or the following:                                              |

(A)  $2 + 9\sqrt{2}$ (B)  $9 + 4\sqrt{3}$ (C)  $7 + 5\sqrt{3}$ (D)  $7 + 4\sqrt{3}$ (A) 8 (45) Fill in the blanks so as to make each of the following (C) 4 statements true (Final answer only)  $\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{6} = \dots$ (A) 6 **(B)** 8 (A) 1 (C) 4 (D) 15 (C) 3 (46) Abscissa of all the points on the x -axis is (A) 0 (B) any number (C) 1 (D) 2 (47) ..... is one of the factors of  $p(x) = x^3 - 3x^2 + 7x - 5$ nature? (A) x - 3**(B)** x + 1(A) *Fe* (C) x - 5(D) x - 1(C) Au (48) Point (-3, 5) lies in the (A) first quadrant (B) second quadrant (C) third quadrant (D) fourth quadrant (49) If the coordinates of the two points are P(-2,3) and Q(-3,5), then (abscissa of P) (abscissa of Q) is (A) −5 (B) −1 (A) 99% (C) −2 (D) 1 (50) Find the value of a:  $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (A) 11 **(B)** −11 (C) 12 (D) 13  $\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}$ (51) Simplify:  $\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}}$ **(B)** 0 (A) 10 (C) −1 (D) 1 (52) Every rational number is (A) a natural number (B) a real number (C) an integer (D) a whole number (53) On dividing  $16x^2 - 24x + 9$  by 4x - 3, find the remainder. (A) −1 **(B)** 0 (C) 2 (D) 4 (54) Find the value of k, if x - 1 is a factor of p(x) in this case :  $p(x) = kx^2 - \sqrt{2}x + 1$ (A)  $-\sqrt{2}+1$ (B)  $\sqrt{2} - 1$ (D)  $-\sqrt{2}-1$ (C)  $\sqrt{2} + 1$ (55) The degree of polynomial  $5x^2 - 7x - 11$  is..... (A) 2 **(B)** 4 (C) 6 (D) 8 (56) Find the value of m so that 2x - 1 be a factor of  $8x^4 + 4x^3 - 16x^2 + 10x + m.$ (A) 2 **(B)** −2 (C) −1 (D)  $-\frac{1}{2}$ (57) Find the remainder when  $x^3 + 3x^2 + 3x + 1$  is divided by x. seven (A) 5 **(B)** 4 (D) 0 (C) 1 (58) Write the coefficients of  $x^2$  in each of the following polynomials  $4 + 7x + 3x^2$ (A) 11 (B) 6 (A)  $Fe_3O_4$ (C) 3 (D) 1 (C)  $Fe_2O_3$ 

(59) The value of  $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$  is equal to (B)  $\sqrt{2}$ (D) 2 (60) If x = 2y + 6, then what is the value of  $x^3 - 8y^3 - 36xy - 216?$ **(B)** 0 (D) 4 Science - Section A (MCQ) (61) Which of the following metals is obtained in free state in (B) Al (D) Ca (62) At which value of pH of the inner side of the mouth does the decay of teeth take place? (A) Lower than 6.5(B) Higher than 7.3(C) Lower than 5.5(D) Higher than 5.8(63) About ...... % impurity remains in alumina obtained by Bayer's method. (B) 100% (C) 99.5% (D) 95.5% (64) With which of the following does the element carbon not give reaction? (A) Dichlorine gas (B) Dioxygen gas (C) Dihydrogen gas (D) Dilute hydrochloric acid (65) What is the chemical formula of oleum? (A)  $H_2SO_3$ (B)  $H_2S_2O_7$ (C)  $H_2Cr_2O_7$ (D)  $H_3PO_4$ (66) Which solution will be basic? (A)  $[H_3O^+] = 10^{-5} M$ (B)  $[H_3O^+] = 10^{-12} M$ (C)  $[H_3O^+] = 10^{-7} M$ (D)  $[H_3O^+] = 10^{-4} M$ (67) What is the molecular formula of calcium silicate (slag)? (A)  $CaSiO_3$ (B)  $CaSiO_2$ (C)  $Na_2SiO_3$ (D)  $CaCO_3$ (68) One of the constituents of baking powder is sodium hydrogencarbonate, the other constituent is (A) hydrochloric acid (B) sulphuric acid (C) acetic acid (D) tartaric acid (69) Solid calcium oxide reacts vigorously with water to form calcium hydroxide accompanied by liberation of heat. This process is called slaking of lime. Calcium hydroxide dissolves in water to form its solution called lime water. Which among the following is (are) true about slaking of lime and the solution formed? (i) It is an endothermic reaction (*ii*) It is an exothermic reaction (iii) The pH of the resulting solution will be more than (iv) The pH of the resulting solution will be less than seven (A) (ii) and (iii)(B) (i) and (ii)(C) (i) and (iv)(D) (iii) and (iv)(70) Which of the following is the formula of the iron ore haematite? (B)  $FeCO_3$ 

(D)  $FeS_2$ 

3

| <ul><li>(71) Which type of compound is ethyl acetate?</li><li>(A) Ketone</li><li>(B) Carboxyl</li></ul>                 | (A) $Mg(OH)_2$ (B) $Ca(OH)_3$<br>(C) $Al_2O_2$ (D) $Ng_2CO_2 + 10H_2O_3$                                          |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| (C) Ester (D) Halide                                                                                                    |                                                                                                                   |
| (72) Which of the following pairs will give displacement reactions ?                                                    | <ul><li>(80) Buckminsterfullerene is an allotropic form of</li><li>(A) phosphorus</li><li>(B) sulphur</li></ul>   |
| (A) $NaCl$ solution and copper metal                                                                                    | (C) tin (D) carbon                                                                                                |
| (B) $MgCl_2$ solution and aluminium metal                                                                               | (81) Common salt besides being used in kitchen can also be use                                                    |
| (C) $FeSO_4$ solution and silver metal                                                                                  | as the raw material for making                                                                                    |
| (D) $AgNO_3$ solution and copper metal                                                                                  | ( <i>ii</i> ) bleaching powder                                                                                    |
| (73) Which of the following statements is true for acids ?                                                              | (iii) baking soda                                                                                                 |
| (A) Bitter and change red litmus to blue                                                                                | ( <i>iv</i> ) stated line<br>(A) ( <i>i</i> ) and ( <i>ii</i> ) (B) ( <i>i</i> ), ( <i>ii</i> ) and ( <i>iv</i> ) |
| (B) Sour and change red litmus to blue                                                                                  | (C) ( <i>ii</i> ) and ( <i>iii</i> ) $(D)$ ( <i>i</i> ) ( <i>iii</i> ) and ( <i>iv</i> )                          |
| (C) Bitter and change blue litmus to red                                                                                |                                                                                                                   |
| (D) Sour and change blue litmus to red                                                                                  | (82) Which of the following is acidic in nature ?<br>(A) Lime water (B) Human blood                               |
| (74) What happens when calcium is treated with water ?                                                                  | (A) Lime water (D) Antacid                                                                                        |
| ( <i>i</i> ) It does not react with water                                                                               |                                                                                                                   |
| ( <i>iii</i> ) It reacts less violently with water                                                                      | (83) Whose acid-base theory can be applied to aqueous and<br>non-aqueous solutions?                               |
| ( <i>iv</i> ) Bubbles of hydrogen gas formed stick to the surface of                                                    | (A) Robert Boyle (B) Arrhenius                                                                                    |
| (A) $(i)$ and $(iv)$ (B) $(iii)$ and $(iv)$                                                                             | (C) Bronsted-Lowry (D) Rutherford                                                                                 |
| (C) $(i)$ and $(ii)$ (D) $(ii)$ and $(iv)$                                                                              | (84) Which of the following are not ionic compounds?                                                              |
| (75) The electronic configurations of three elements $X, Y$ and $Z$                                                     | (i) KCl<br>(ii) HCl                                                                                               |
| $X - \{2, 8\}$ ; $Y - \{2, 8, 7\}$ and $Z - \{2, 8, 2\}$ . Which of the following is correct ?                          | $(ii) \ ICl_4 \\ (iv) \ NaCl$                                                                                     |
| (A) $X$ is a metal                                                                                                      | (A) $(ii)$ and $(iii)$ (B) $(i)$ and $(ii)$                                                                       |
| (B) $Y$ is a non-metal and $Z$ is a metal                                                                               | (C) $(iii)$ and $(iv)$ (D) $(i)$ and $(iii)$                                                                      |
| (C) Z is a non-metal                                                                                                    | (85) One who is habituated to drinking alcohol, is given medicir                                                  |
| (D) Y is a metal                                                                                                        | (A) Diclofenac sodium (B) Aspirin                                                                                 |
| (76) Which among the following are unsaturated hydrocarbons?<br>(i) $H_3C - CH_2 - CH_2 - CH_3$                         | (C) Paracetamol (D) Disulfiram                                                                                    |
| $(ii) H_3C - C \equiv C - CH_3$                                                                                         | (86) What type of substance is $NH_2$ ?                                                                           |
| $H_3C - CH - CH_3$                                                                                                      | (A) Strong acid (B) Weak acid                                                                                     |
| $(iii)$ $CH_3$                                                                                                          | (C) Strong base (D) Weak base                                                                                     |
| $H_3C - C = CH_2$                                                                                                       | (87) Identify the correct representation of reaction occurring                                                    |
| $(iv)$ $CH_3$                                                                                                           | (A) $2NaCl(l) + 2H_2O(l) \rightarrow 2NaOH(l) + Cl_2(q) + H_2(q)$                                                 |
|                                                                                                                         | (B) $2NaCl(aq) + 2H_2O(l) \rightarrow 2NaOH(aq) + Cl_2(q) + H_2(q)$                                               |
| (A) ( <i>i</i> ) and ( <i>iii</i> ) (B) ( <i>ii</i> ) and ( <i>iii</i> )                                                | (C) $2NaCl(aq) + 2H_2O(l) \rightarrow$                                                                            |
| (C) $(iii)$ and $(iv)$ (D) $(ii)$ and $(iv)$                                                                            | $2NaOH(aq) + \tilde{Cl_2}(aq) + H_2(aq)$                                                                          |
| <ul><li>(77) Calcium phosphate is present in tooth enamel. Its nature is</li><li>(A) acidic</li><li>(B) basic</li></ul> | (D) $2NaCl(aq) + 2H_2O(aq) \rightarrow 2NaOH(aq) + Cl_2(g) + H_2(g)$                                              |
| (C) neutral (D) amphoteric                                                                                              | (88) Which one of the following processes involve chemical<br>reactions?                                          |
| (78) Which among the following alloys contain mercury as one of                                                         | (A) Storing of oxygen gas under pressure in a gas cylinder                                                        |
| (A) Stainless steel                                                                                                     | (B) Liquefaction of air                                                                                           |
| (B) Alnico                                                                                                              | (C) Keeping petrol in a china dish in the open                                                                    |
| (C) Solder                                                                                                              | (D) Heating copper wire in presence of air at high                                                                |
| (D) Zinc amalgam                                                                                                        | temperature                                                                                                       |
| (79) Name the sodium compound which is used for softening                                                               | (89) Match the chemical substances given in Column (A) with                                                       |
| hard water.                                                                                                             | their appropriate application given in Column $(B)$                                                               |

| Column (A)                                          | Column $(B)$                             |  |  |  |  |
|-----------------------------------------------------|------------------------------------------|--|--|--|--|
| (A) Bleaching powder                                | (i) Preparation of glass                 |  |  |  |  |
| (B) Baking soda                                     | $(ii)$ Production of $H_2$<br>and $Cl_2$ |  |  |  |  |
| (C) Washing soda                                    | (iii) Decolourisation                    |  |  |  |  |
| (D) Sodium chloride                                 | (iv) Antacid                             |  |  |  |  |
| (A) $A - (iii), B - (iv), C - (i), D - (ii)$        |                                          |  |  |  |  |
| <b>(B)</b> $A - (iii), B - (ii), C - (iv), D - (i)$ |                                          |  |  |  |  |

- (C) A (ii), B (i), C (iv), D (iii)
- (D) A (ii), B (iv), C (i), D (iii)
- (90) If copper is kept open in air, it slowly loses its shining brown surface and gains a green coating. It is due to the formation of

| (A) $CuSO_4$ | <b>(B)</b> <i>CuO</i> |
|--------------|-----------------------|
|--------------|-----------------------|

- (C)  $Cu(NO_3)_2$  (D)  $CuCO_3$
- (91) Well defined nucleus is absent in
  - (A) blue green algae (B) diatoms
  - (C) algae (D) yeast
- (92) Find out the false sentences
  - (A) Golgi apparatus is involved with the formation of lysosomes
  - (B) Nucleus, mitochondria and plastid have *DNA*; hence they are able to make their own structural proteins
  - (C) Mitochondria is said to be the power house of the cell as *ATP* is generated in them
  - (D) Cytoplasm is called as protoplasm
- (93) In taxonomic hierarchy family comes between
  - (A) Class and Order (B) Order and Genus
  - (C) Genus and Species (D) Division and Class
- (94) How much momentum will a dumb-bell of mass 10 kg transfer to the floor if it falls from a height of 80 cm? Take its downward acceleration to be  $10 m s^{-2}$ .
  - (A)  $25 kg m s^{-1}$  (B)  $49 kg m s^{-1}$
  - (C)  $40 kg m s^{-1}$  (D)  $45 kg m s^{-1}$
- (95) Which cell organelle plays a crucial role in detoxifying many poisons and drugs in a cell ?
  - (A) Golgi apparatus
  - (B) Lysosomes
  - (C) Smooth endoplasmic reticulum
  - (D) Vacuoles
- (96) Two persons manage to push a motorcar of mass  $1200 \, kg$  at a uniform velocity along a level road. The same motorcar can be pushed by three persons to produce an acceleration of  $0.2 \, m \, s^{-2}$ . With what force(in N) does each person push the motorcar? (Assume that all persons push the motorcar with the same muscular effort.)
  - **(A)** 240 **(B)** 244
  - (C) 248 (D) 225
- (97) Cell arises from pre-existing cell was stated by
  - (A) Haeckel (B) Virchow
    - (C) Hooke (D) Schleiden
- (98) Identify the  $Mg^{2+}$  ion from the Fig. where, n and p represent the number of neutrons and protons respectively



- (99) Corals are
  - (A) Poriferans attached to some solid support
  - (B) Cnidarians, that are solitary living
  - (C) Poriferans present at the sea bed
  - (D) Cnidarians that live-in colonies
- (100) An artificial satellite is moving in a circular orbit of radius  $42250 \ km$ . Calculate its speed (in  $ms^{-1}$ ) if it takes 24 hours to revolve around the earth.

(D) 4064

- (A) 1026 (B) 3074
- (C) 2096

|        | Science - Sec                                                                                                                                                                                                                                                                   | tion <b>B</b> (мсq)                                                                                                                                                                    |       | (A)                                                                                                                                                                 |                                                                                                                                             | (B)                                                                                                              |                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| (101)  | Mass of one atom of oxygen (A) 8 u                                                                                                                                                                                                                                              | is<br>(B) $\frac{32}{6.023 \times 10^{23}} g$                                                                                                                                          |       | Distance<br>(m)                                                                                                                                                     |                                                                                                                                             | Distance<br>(m)                                                                                                  |                                                    |
|        | (C) $\frac{1}{6.023 \times 10^{33}} g$                                                                                                                                                                                                                                          | (D) $\frac{16}{6.023 \times 10^{23}} g$                                                                                                                                                |       |                                                                                                                                                                     | Time (s) $\longrightarrow$                                                                                                                  |                                                                                                                  | Time (s) $\longrightarrow$                         |
| (102)  | Cinnabar $(HgS)$ is a promine<br>grams of mercury are present<br>mass of $Hg$ and $S$ are 200.6 g<br>respectively.<br>(A) 178.53 g                                                                                                                                              | nt ore of mercury. How many<br>t in $225 g$ of pure $HgS$ ? Molar<br>$gmol^{-1}$ and $32 gmol^{-1}$<br>(B) $155.42 g$                                                                  |       | Distance (D)                                                                                                                                                        |                                                                                                                                             | Distance (C)                                                                                                     |                                                    |
|        | <b>(C)</b> 190.41 g                                                                                                                                                                                                                                                             | <b>(D)</b> 194.04 g                                                                                                                                                                    |       |                                                                                                                                                                     |                                                                                                                                             |                                                                                                                  |                                                    |
| (103)  | Rutherford's $\alpha$ - particle scat<br>(i) electrons have negative c<br>(ii) the mass and positive ch<br>concentrated in the nucleus<br>(iii) neutron exists in the nuc<br>(iv) most of the space in ato<br>statements are correct ?<br>(A) (i) and (iii)<br>(C) (i) and (iv) | tering experiment showed that<br>harge<br>arge of the atom is<br>cleus<br>m is empty Which of the above<br>(B) ( <i>iii</i> ) and ( <i>iv</i> )<br>(D) ( <i>ii</i> ) and ( <i>iv</i> ) | (112) | ) Cell wall of v<br>(A) Bacteria<br>(C) Mango t<br>) The dead ele<br>(A) compani                                                                                    | Time (s)                                                                                                                                    | se is not mad<br>(B) Hydrilla<br>(D) Cactus<br>the phloem i<br>(B) phloem                                        | Time (s) $\longrightarrow$<br>le up of cellulose ? |
| (104)  | A hammer of mass $500 a$ , mo                                                                                                                                                                                                                                                   | ving at $50  ms^{-1}$ , strikes a nail.                                                                                                                                                |       | (C) phloem                                                                                                                                                          | parenchyma                                                                                                                                  | (D) sieve tu                                                                                                     | bes                                                |
| (10.1) | The nail stops the hammer in<br>What is the force(in <i>N</i> ) of the<br>(A) 5000<br>(C) 3500                                                                                                                                                                                  | a very short time of 0.01 s.<br>e nail on the hammer?<br>(B) 2500<br>(D) 4500                                                                                                          | (114) | ) Which of the<br>model of atc<br>(i) considere<br>(ii) establish                                                                                                   | e following state<br>om are correct ?<br>ed the nucleus as<br>ned that the $\alpha-1$                                                       | ments about<br>s positively ch<br>particles are f                                                                | Rutherford's<br>narged<br>four times as heavy      |
| (105)  | Which of the following does maturity ?                                                                                                                                                                                                                                          | not lose their nucleus at                                                                                                                                                              | 2     | as a hydroge<br>( <i>iii</i> ) can be<br>( <i>iv</i> ) was in a                                                                                                     | en atom<br>compared to sola<br>agreement with 1                                                                                             | ar system<br>Thomson's mo                                                                                        | odel                                               |
|        | (A) Vessel                                                                                                                                                                                                                                                                      | (B) Red blood cells                                                                                                                                                                    |       | (A) $(i)$ and $($                                                                                                                                                   | iii)                                                                                                                                        | <b>(B)</b> ( <i>ii</i> ) and                                                                                     | (iii)                                              |
| (106)  | A train is travelling at a speed<br>applied so as to produce a ur<br>$-0.5 m s^{-2}$ . Find how far(in <i>n</i><br>brought to rest.<br>(A) 625<br>(C) 500                                                                                                                       | d of 90 km h <sup>-1</sup> . Brakes are<br>hiform acceleration of<br>n) the train will go before it is<br>(B) 225<br>(D) 750                                                           | (115) | <ul> <li>(C) (i) and (</li> <li>Arun has precedent of the chloride in wrepresents t</li> <li>(a) 0.01 g of</li> <li>(b) 0.11 g of</li> <li>(c) 1.00 g of</li> </ul> | iv)<br>epared 0.01% (by<br>vater. Which of t<br>he composition of<br>NaCl + 99.99 g<br>NaCl + 100 g of<br>NaCl + 100 g of<br>NaCl + 00 g of | (D) only (i)<br>w mass) solution<br>he following<br>of the solution<br>of water<br>f water<br>f water<br>f water | on of sodium<br>correctly<br>ns ?                  |
| (107)  | Convert the following tempe                                                                                                                                                                                                                                                     | rature to celsius scale :                                                                                                                                                              |       | (a) $0.10 \ g$ OI<br>(A) (a)                                                                                                                                        | $Nu \subset i + 99.90 g$                                                                                                                    | (B) (b)                                                                                                          |                                                    |
|        | a. 300 K<br>b. 573 K.<br>(A) 27 °C and 300 °C                                                                                                                                                                                                                                   | (B) $270  {}^oC$ and $30  {}^oC$                                                                                                                                                       | (116) | (C) (c)<br>) Which amor                                                                                                                                             | ng the following i                                                                                                                          | (D) (d)                                                                                                          | marine ?                                           |
|        | (C) $25  ^oC$ and $330  ^oC$                                                                                                                                                                                                                                                    | (D) $40  {}^oC$ and $270  {}^oC$                                                                                                                                                       | . ,   | (A) Echinode                                                                                                                                                        | ermata                                                                                                                                      | (B) Porifera                                                                                                     |                                                    |
| (108)  | Real organs are absent in<br>(A) Mollusca                                                                                                                                                                                                                                       | (B) Arthropoda                                                                                                                                                                         | (117) | (C) Mollusca                                                                                                                                                        | a<br>of an object tend                                                                                                                      | (D) Pisces                                                                                                       | e obiect                                           |
|        | (C) Coelenterata                                                                                                                                                                                                                                                                | (D) Echinodermata                                                                                                                                                                      | ()    | (A) to increa                                                                                                                                                       | ase its speed                                                                                                                               |                                                                                                                  |                                                    |
| (109)  | Elements with valency 1 are                                                                                                                                                                                                                                                     |                                                                                                                                                                                        |       | (B) to decre                                                                                                                                                        | ase its speed                                                                                                                               |                                                                                                                  |                                                    |
|        | (A) always metals                                                                                                                                                                                                                                                               | (B) always metalloids                                                                                                                                                                  |       | (C) to decel                                                                                                                                                        | erate due to frict                                                                                                                          | ion                                                                                                              |                                                    |
|        | (C) always non-metals                                                                                                                                                                                                                                                           | (D) either metals or<br>non-metals                                                                                                                                                     |       | (D) to resist                                                                                                                                                       | any change in its                                                                                                                           | s state of mo                                                                                                    | tion                                               |
| (110)  | Contractile proteins are foun<br>(A) bones                                                                                                                                                                                                                                      | d in<br>(B) blood                                                                                                                                                                      | (118) | ) Which of the tissue of the                                                                                                                                        | e following cells<br>body ?                                                                                                                 | is found in th                                                                                                   | e cartilaginous                                    |
|        | (C) muscles                                                                                                                                                                                                                                                                     | (D) cartilage                                                                                                                                                                          |       | (A) Chondro                                                                                                                                                         | ocytes                                                                                                                                      | (B) Basophi                                                                                                      | IS<br>II-                                          |
| (111)  | Which of the following figure<br>motion of a moving object co                                                                                                                                                                                                                   | es (Fig.) represents uniform<br>prrectly ?                                                                                                                                             | (119) | (C) Osteocy<br>) Meristemati                                                                                                                                        | ιes<br>c tissues in plant                                                                                                                   | ט) Mast ce<br>s are                                                                                              | lis                                                |

(A) localised and dividing cells (B) not limited to certain regions (C) localised and permanent (D) growing in volume (120) Which among the following produce seeds? (A) Thallophyta (B) Bryophyta (C) Gymnosperms (D) Pteridophyta Globalt



# **Global Education of Science**

Subject: Mathematics, ScienceStandard: 10,9Total Mark: 480

# **MCQ and MCQ**

(Answer Key)

| Paper Set | : 1          |   |
|-----------|--------------|---|
| Date      | : 26-07-2024 | 4 |
| Time      | : 0H:20M     |   |

### Mathematics - Section A (MCQ)

| 1 - D  | 2 - C  | 3 - B  | 4 - A  | 5 - A  | 6 - C  | 7 - A  | 8 - B  | 9 - D  | 10 - B |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 11 - B | 12 - D | 13 - B | 14 - C | 15 - A | 16 - A | 17 - D | 18 - D | 19 - D | 20 - D |
| 21 - C | 22 - C | 23 - C | 24 - A | 25 - D | 26 - B | 27 - A | 28 - A | 29 - A | 30 - C |
| 31 - C | 32 - B | 33 - D | 34 - C | 35 - B | 36 - B | 37 - D | 38 - D | 39 - D | 40 - C |

Mathematics - Section B (MCQ)

| 41 - A | 42 - A | 43 - D | 44 - D | 45 - A | 46 - B | 47 - D | 48 - B | 49 - D | 50 - A |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 51 - D | 52 - B | 53 - B | 54 - B | 55 - A | 56 - B | 57 - C | 58 - C | 59 - D | 60 - B |

# Science - Section A (MCQ)

| 61 - C | 62 - C | 63 - C | 64 - D | 65 - B | 66 - B | 67 - A | 68 - D | 69 - A | 70 - C  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 71 - C | 72 - D | 73 - D | 74 - B | 75 - B | 76 - D | 77 - B | 78 - D | 79 - D | 80 - D  |
| 81 - C | 82 - C | 83 - C | 84 - A | 85 - D | 86 - D | 87 - B | 88 - D | 89 - A | 90 - D  |
| 91 - A | 92 - A | 93 - B | 94 - C | 95 - C | 96 - A | 97 - B | 98 - B | 99 - D | 100 - B |

# Science - Section B (MCQ)

|  | 101 - D | 102 - D | 103 - D | 104 - B | 105 - C | 106 - A | 107 - A | 108 - C | 109 - D | 110 - C |
|--|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|  | 111 - A | 112 - A | 113 - B | 114 - A | 115 - A | 116 - A | 117 - D | 118 - A | 119 - A | 120 - C |
|  |         |         |         |         |         |         |         |         |         |         |



# **Global Education of Science**

Subject: Mathematics, ScienceStandard: 10,9Total Mark: 480

# **MCQ** and **MCQ**

(Solutions)

 Paper Set
 : 1

 Date
 : 26-07-2024

 Time
 : 0H:20M

### Mathematics - Section A (MCQ) ...

(1) Solve the equation  $x^2 - 8x - 21 = 0$  using the formula. (A)  $4 - \sqrt{37}$  and  $4 - \sqrt{37}$  (B)  $4 + \sqrt{37}$  and  $4 + \sqrt{37}$ (C)  $-4 + \sqrt{37}$  and  $-4 - \sqrt{37}$  (D)  $4 + \sqrt{37}$  and  $4 - \sqrt{37}$ 

#### Solution:(Correct Answer:D)

Comparing  $x^2 - 8x - 21 = 0$  with  $ax^{2} + bx + c = 0, a = 1, b = -8, c = -21$ Discriminant  $D = b^2 - 4ac$  $= (-8)^2 - 4(1)(-21)$ = 64 + 84= 148 > 0D > 0 but not a perfect square. ... The equation has distinct irrational roots. If  $\alpha$  and  $\beta$  are the roots of the equation. then  $\alpha = \frac{-b + \sqrt{D}}{2a}$  $(-8) + \sqrt{148}$ 2(1) $8 + 2\sqrt{37}$  $= 4 + \sqrt{37}$  $\beta = \frac{-b - \sqrt{D}}{2}$  $-(-8)^{-}\sqrt{148}$  $= \frac{8-2\sqrt{37}}{2}$  $= 4 - \sqrt{37}$ 

The roots of the given quadratic equation are  $4 + \sqrt{37}$  and  $4 - \sqrt{37}$ .

(2) The two triangles in the figure are congruent using congruence theorem. Here, it is given OQ = OR. Which of these conditions alongwith the given condition is sufficient to prove that the two triangles are congruent to each other?



#### Solution:(Correct Answer:C)

(3) A train, travelling at a uniform speed for 360 km, would have taken  $48 \min$  less to travel the same distance, if its speed were 5 km/h more. Find the original speed of the train. (in km/h)

| (A) | 54 | <b>(B)</b> 45 |
|-----|----|---------------|
| (C) | 50 | (D) 55        |

#### Solution:(Correct Answer:B)

Let the original speed of the train  $= x \, km/h$ Then, the increased speed of the train  $= (x + 5) \, km/h$  [by

given condition] and distance  $= 360 \, km$ According to the question,  $\Rightarrow \frac{360}{x} - \frac{360}{x+5} = \frac{4}{5}$  [: time =  $\frac{\text{Distance}}{\text{Speed}}$  and  $\begin{array}{l} x & x + 3 \\ 48min &= \frac{48}{60}h = \frac{4}{5}h] \\ \Rightarrow \frac{360(x+5)-360x}{x(x+5)} &= \frac{4}{5} \left[ \because 48\ min = \frac{48}{60}\ h = \frac{4}{5}\ h \right] \\ \Rightarrow \frac{360x+1800-360x}{x^2+5x} &= \frac{4}{5} \end{array}$  $\Rightarrow \frac{1800}{x^2 + 5x} = \frac{4}{5}$  $\Rightarrow x^2 + 5x = \frac{1800 \times 5}{4} = 2250$  $\Rightarrow x^2 + 5x - 2250 = 0$  $\Rightarrow x^2 + (50x - 45x) - 2250 = 0$  $\Rightarrow x^2 + 50x - 45x - 2250 = 0$  [by factorisation method]  $\Rightarrow x(x+50) - 45(x+50) = 0$  $\Rightarrow (x+50)(x-45) = 0$ Now,  $x + 50 = 0 \Rightarrow x = -50$ which is not possible because speed cannot be negative and  $x - 45 = 0 \Rightarrow x = 45$ . Hence, the original speed of the train =  $45 \, km/h$ (4) In  $\Delta MNP, \overline{MX}$  is a median. If  $MN^2 + MP^2 = 50$  and MX = 3, then  $NP = \dots$ **(A)** 8 **(B)** 16 (C) 32 (D) 4 Solution:(Correct Answer:A) (5) If the following quadratic equations has two equal and real roots then find the value of  $k: kx^2 - 2\sqrt{5}x + 4 = 0$ (B)  $\frac{15}{3}$ (A)  $\frac{5}{4}$ (D)  $\frac{10}{2}$ (C)  $\frac{4}{1}$ Solution:(Correct Answer:A)  $\frac{5}{4}$ (6) If a pair of equations 3x + ky - 9 = 0 and x + 2y - 3 = 0 has infinite solutions. then  $k = \dots \dots$ (A) −2 **(B)** 2 **(C)** 6 (D) −6 Solution:(Correct Answer:C) (7) The number of the zeros of  $p(x) = x^2 - 9$  is..... **(A)** 2 **(B)** 3 (C) 4 (D) 9 Solution:(Correct Answer:A) (8)  $\Delta ABC \sim \Delta PQR$  for the correspondence  $ABC \leftrightarrow PQR$ . If AB: PQ = 3: 4 and the perimeter of  $\Delta PQR$  is 24, find the perimeter of  $\Delta ABC$ . (A) 15 **(B)** 18 (C) 20 (D) 25

#### Solution:(Correct Answer:B)

18

(9) At present Asha's age (in years) is 2 more than the square of her daughter Nisha's age. When Nisha grows to her mother's present age, Asha's age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha. (in year)

| <b>(A)</b> 4,27 | <b>(B)</b> 9,22 |
|-----------------|-----------------|
| (C) 6,28        | <b>(D)</b> 5,27 |

#### Solution:(Correct Answer:D)

Let Nisha's present age be x yr. Then, Asha's present age  $= x^2 + 2$  [by given condition] Now, when Nisha grows to her mother's present age i.e., after  $[(x^2+2)-x]$  yr. Then, Asha's age also increased by  $[(x^2+2)-x]$  yr Again by given condition, Age of Asha = One years less than 10 times the present age of Nisha  $(x^{2}+2) + \{(x^{2}+2) - x\} = 10x - 1$  $\Rightarrow 2x^2 - x + 4 = 10x - 1$  $\Rightarrow 2x^2 - 11x + 5 = 0$  $\Rightarrow 2x^2 - 10x - x + 5 = 0$  $\Rightarrow 2x(x-5) - 1(x-5) = 0$  $\Rightarrow (x-5)(2x-1) = 0$  $\therefore x = 5$ [nere,  $x = \frac{1}{2}$  cannot be possible, because at  $x = \frac{1}{2}$ , Asha's age is  $2\frac{1}{4}y\bar{r}$  which is not possible] Hence, required age of Nisha = 5 yrand required age of Asha =  $x^2 + 2 = (5)^2 + 2 = 25 + 2 = 27$ yr

(10) The first term of an *A*.*P*. is denoted by ......
 (A) *d* (B) *a* (C) *l* (D) *n*

#### Solution:(Correct Answer:B)

| (11) The sum of the ze | ros of $x^2 + 7x + 12$ is |
|------------------------|---------------------------|
| (A) 7                  | <b>(B)</b> -7             |
| <b>(C)</b> 12          | (D) -12                   |

Solution:(Correct Answer:B)

-7

#### Solution:(Correct Answer:D)

(13) In ∆ABC, m∠B = 90 and BM is an altitude. If AM = 12 and CM = 3, then BM = ......
(A) 36
(B) 6
(C) 7.5
(D) 9

#### Solution:(Correct Answer:B)

(14) ...... is not a quadratic equation. (A) x(3x + 7) = (x + 1)(x - 1)

(B) 
$$x^2 - 2x + 1 = 0$$

(C) 
$$2x(3x-5) + 1 = 3x(2x+5) + 3$$

(D)  $4 - 3x - 2x^2 = 0$ 

#### Solution:(Correct Answer:C) null

(15) Find the roots of the following quadratic equations by using the general formula for the roots, if they exist :  $2u^2 + 5u - 3 = 0$ 

(A) 
$$\frac{1}{2}$$
 and  $-3$  (B)  $\frac{1}{7}$  and  $9$ 

(C) 
$$\frac{1}{2}$$
 and  $\frac{1}{2}$  (D)  $\frac{3}{2}$  and 6

#### Solution:(Correct Answer:A)

Comparing  $2y^2 + 5y - 3 = 0$  with  $ay^2 + by + c = 0; a = 2, b = 5, c = -3$ Discriminant  $D = b^2 - 4ac$   $= (5)^2 - 4(2)(-3)$  = 25 + 24 = 49 > 0Since, D > 0 and a square of a rational number with  $a, b, c \in Q$ , the equation has distinct rational roots.  $\alpha = \frac{-b + \sqrt{D}}{2a}$   $= \frac{-5 + \sqrt{49}}{2(2)}$   $= \frac{-5 - \sqrt{D}}{2a}$   $\beta = \frac{-b - \sqrt{D}}{2(2)}$   $= \frac{-5 - \sqrt{49}}{2(2)}$   $= \frac{-5 - 7}{4} = \frac{-12}{4} = -3$ Thus, the roots of the given equation are  $\frac{1}{2}$  and -3.

#### 

| (A) does not exist as a | (B) $\sqrt{6} + 1$        |
|-------------------------|---------------------------|
| binomial surd           |                           |
| (C) $\sqrt{6} - 1$      | (D) $\sqrt{7} + \sqrt{5}$ |

#### Solution:(Correct Answer:A)

(17) In a two-digit number, the digit at unit's place is x and the digit at ten's place is y. then the number is .....

| (A) $10x + y$ | (B) $x + y$          |
|---------------|----------------------|
| (C) $10(x+y)$ | <b>(D)</b> $10y + x$ |

#### Solution:(Correct Answer:D)

- (18) The product of the digits of a two-digit number is 14. The number obtained by interchanging the digits is 45 more than the original number. Find the original number.
  - (A) 11 (B) 13
  - (C) 32 (D) 27

#### Solution:(Correct Answer:D)

- 27
- (19) The sum of the zeros of a quadratic polynomial  $p(x) = x^2 + 3x + 2$  is......

(A) 2 (B) -2

(C) 3 (D) -3

#### Solution:(Correct Answer:D)

The sum of the zeros  $=-rac{b}{a}=rac{-3}{1}=-3$ 

(20) In  $\Delta PQR, m \angle Q = 90$  and T is the midpoint of  $\overline{PR}$ . If PQ = 6 and QR = 8, then  $QT = \dots$ (A) 12 (B) 9 (C) 10 (D) 5

#### Solution:(Correct Answer:D)

| (21)is an <i>A</i> . <i>P</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | (28) In $\Delta AB$                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) $3, 3, 3, 3, \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 2, 22, 222, 2222,                                                                                                                  | correspo<br>(A) PR                                                                                                                                                          |
| <b>(C)</b> 5, 15, 25, 35,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D) $4, -4, 4, -4, \ldots$                                                                                                             | (C) RP                                                                                                                                                                      |
| Solution:(Correct Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :C)                                                                                                                                    | Solutio                                                                                                                                                                     |
| (22) Find whether the following<br>mots exist, find them.<br>$x^2 + 5\sqrt{5}x - 70 = 0$<br>(A) $3\sqrt{5} - 5\sqrt{7}$<br>(C) $2\sqrt{5} - 7\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                         | g equations have real roots. If real<br>(B) $2\sqrt{3} - 7\sqrt{3}$<br>(D) $2\sqrt{7} - 7\sqrt{7}$                                     | (29) In pair o $a_2x + b_2$<br>(A) $a_1b_2$<br>(C) $b_1c_2$                                                                                                                 |
| Solution:(Correct Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :C)                                                                                                                                    | Solutio                                                                                                                                                                     |
| Given equation is $x^2 + 5\sqrt{3}$<br>On comparing with $ax^2 + 6$<br>$a = 1, b = 5\sqrt{5}$ and $c = -7$<br>$\therefore$ Discriminant, $D = b^2 - 4$<br>= 125 + 280 = 405 > 0<br>Therefore, the equation $x^2$<br>distinct real roots.<br>Roots, $x = \frac{-b\pm\sqrt{D}}{2a}$<br>$= \frac{-5\sqrt{5}\pm\sqrt{405}}{2(1)} = \frac{-5\sqrt{5}\pm9\sqrt{5}}{2}$<br>$= \frac{-5\sqrt{5}\pm9\sqrt{5}}{2}, \frac{-5\sqrt{5}-9\sqrt{5}}{2}$<br>$= \frac{-5\sqrt{5}+9\sqrt{5}}{2}, \frac{-5\sqrt{5}-9\sqrt{5}}{2}$ | 5x - 70 = 0<br>5x - 70 = 0<br>bx + c = 0, we get<br>70<br>$4ac = (5\sqrt{5})^2 - 4(1)(-70)$<br>$4 + 5\sqrt{5}x - 70 = 0$ has two<br>5z | <ul> <li>(30) The solu</li> <li>(A) {(1,</li> <li>(C) an ir</li> <li>Solution</li> <li>(31) If x + 1<br/>of a.</li> <li>(A) -1</li> <li>(C) -2</li> <li>Solution</li> </ul> |
| $= \frac{1}{2}, -\frac{1}{2} = 2\sqrt{3} - 1\sqrt{3}$ (23) In $\triangle ABC, m \angle B = 90$ . If $a$                                                                                                                                                                                                                                                                                                                                                                                                        | = 16 and $c = 12$ , then                                                                                                               | Let $p(x)$<br>As $(x + theorem)$                                                                                                                                            |
| $b = \dots \dots$<br>(A) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>(B)</b> 18                                                                                                                          | $\Rightarrow a($                                                                                                                                                            |
| <b>(C)</b> 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>(D)</b> 28                                                                                                                          | $\Rightarrow a()$ $\Rightarrow -a()$                                                                                                                                        |
| Solution:(Correct Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :C)                                                                                                                                    | $\Rightarrow$ 3a                                                                                                                                                            |
| <ul> <li>(24) The 20<sup>th</sup> term of the A.P. 2</li> <li>(A) -74</li> <li>(C) 22</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | 2, -2, -6, -10, is<br>(B) 20<br>(D) 74                                                                                                 | (32) Without<br>each of<br>$(21)^3 +$<br>(A) 6128                                                                                                                           |
| Solution:(Correct Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :A)                                                                                                                                    | Solution                                                                                                                                                                    |
| (25)are not the measures o<br>(A) 5, 12, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f sides of a right angled triangle.<br>(B) 3,4,5                                                                                       | Taking $a$<br>a + b +<br>= 36 -                                                                                                                                             |
| <b>(C)</b> 7,24,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>(D)</b> 8, 24, 26                                                                                                                   | Now, if $a^3 + b^3$                                                                                                                                                         |
| Solution:(Correct Answer:<br>$5^2 + 12^2 = 13^2, 3^2 + 4^2 = 4^2$<br>But, $8^2 + 24^2 \neq 26^2$<br>Hence 8, 24, 26 are not the                                                                                                                                                                                                                                                                                                                                                                                | <b>:D)</b><br>$5^2$ and $7^2 + 24^2 = 25^2$                                                                                            | $\begin{array}{c} a^{+} + b^{\circ} \\ \therefore (21)^{3} \\ = 63 \times \\ = -340 \end{array}$                                                                            |
| angled triangle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        | (33) Find the $p(x) = x$<br>(A) 0                                                                                                                                           |
| (26) the zero of $p(x) = x^2 + 6x^2$<br>(A) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 9 IS                                                                                                                                 | (C) 2                                                                                                                                                                       |
| (C) $3 \text{ and } -3 \text{ are the zeros}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of (D) 9 is the zero of                                                                                                                | Solutio                                                                                                                                                                     |
| Solution:(Correct Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :B)                                                                                                                                    | Here $p(x)$<br>For $x - We$ hav                                                                                                                                             |
| (27) $\Delta PQR \sim \Delta XYZ$ for the or<br>The perimeter of $\Delta PQR$ is<br>is 60. If $PR = 10$ , find $XZ$ .<br>(A) 25                                                                                                                                                                                                                                                                                                                                                                                | correspondence $PQR \leftrightarrow XYZ$ .<br>s 24 and the perimeter of $\Delta XYZ$<br>(B) 30                                         | (34) With the when the of the formula $(34)$                                                                                                                                |
| <b>(C)</b> 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>(D)</b> 40                                                                                                                          | x+6 (A) 12                                                                                                                                                                  |
| Solution:(Correct Answer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :A)                                                                                                                                    | <b>(C)</b> 0                                                                                                                                                                |

| ) | In $\triangle ABC$ and $\triangle PQR, \angle A \cong$ correspondence $ABC \leftrightarrow \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\angle P$ and $\angle B \cong \angle R$ . Then, the is a similarity. |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|   | (A) PRQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) <i>PQR</i>                                                        |
|   | (C) <i>RPQ</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) <i>RQP</i>                                                        |
|   | Solution:(Correct Answer:A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                     |
| ) | In pair of equations $a_1x + b_1y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r + c_1 = 0$ and                                                     |
|   | $a_2x + b_2y + c_2 = 0$ ifthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n it has unique solution.                                             |
|   | (A) $a_1 b_2 \neq a_2 b_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) $a_1 b_2 = b_1 a_2$                                               |
|   | (C) $b_1 c_2 = c_1 b_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (D) $c_1 a_2 = a_1 c_2$                                               |
|   | Solution:(Correct Answer:A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |
| ) | The solution of $x + y - 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and $2x + 2y - 2 = 0$ is                                              |
|   | <b>(A)</b> {(1,0)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>(B)</b> {(0,1)}                                                    |
|   | (C) an infinite set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D) an empty set                                                      |
|   | Solution:(Correct Answer:C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |
| ) | If $x + 1$ is a factor of $ax^3 + x^2$ of $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $x^2 - 2x + 4a - 9$ , find the value                                  |
|   | (A) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>(B)</b> 0                                                          |
|   | <b>(C)</b> -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D) 2                                                                 |
|   | Solution:(Correct Answer:C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |
|   | Let $p(x) = ax^3 + x^2 - 2x + 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4a-9                                                                  |
|   | As $(x + 1)$ is a factor of $p(x)$ .<br>theorem]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\therefore  p(-1) = 0$ [By factor                                    |
|   | $\Rightarrow a(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} - 2(-1)^{3} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} + (-1)^{2} $ | ) + 4a - 9 = 0                                                        |
|   | $\Rightarrow a(-1) + 1 + 2 + 4a - 9$ $\Rightarrow -a + 4a - 6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 0                                                                   |
|   | $\Rightarrow  3a-6=0 \Rightarrow 3a=6 \Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a = 2                                                                 |
| ) | Without actually calculating t<br>each of the following<br>$(21)^3 + (15)^3 + (-36)^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he cubes, find the value of                                           |
|   | (A) 61280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>(B)</b> -34020                                                     |
|   | (C) 65041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) -53120                                                            |
|   | Solution:(Correct Answer:B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |
|   | Taking $a = 21; b = 15; c = a + b + c = 21 + 15 + (-36)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (-36), we get                                                         |
|   | = 36 - 36 = 0<br>Now, if $a + b + c = 0$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |
|   | $a^3 + b^3 + c^3 = 3abc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
|   | $\therefore (21)^3 + (15)^3 + (-36)^3 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B(21)(15)(-36)                                                        |
|   | = -34020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |
| ) | Find the value of k, if $x - 1$ is<br>$p(x) = x^2 + x + k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a factor of $p(x)$ in this case :                                     |
|   | (A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>(B)</b> 3                                                          |
|   | (C) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>(D)</b> -2                                                         |
|   | Solution:(Correct Answer:D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |
|   | Here $p(x) = x^2 + x + k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |
|   | For $x - 1$ be a factor of $p(x)$ ,<br>We have $p(1) = (1)^2 + 1 + k$<br>$\therefore k + 2 = 0 \Rightarrow k = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p(1) should be equal to 0.<br>or $p(1) = 1 + 1 + k = k + 2$           |
| ) | With the help of the remaind<br>when the polynomial $x^3 + x^2$<br>of the following divisors<br>x + 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er theorem, find the remainder $-26x+24$ is divided by each           |
|   | (A) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>(B)</b> 8                                                          |
|   | <b>(C)</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) 3                                                                 |

| Solution:(Correct Answer                                                                              | :C)                               | Solu                            | ition:(Correct Answer:                                           | c)                                     |
|-------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------------------------------|----------------------------------------|
| 0                                                                                                     |                                   | Give                            | $2\sqrt{3} + \sqrt{3} = (2+1)\sqrt{3}$                           | $\sqrt{3} = 3\sqrt{3}$                 |
| (35) If $(a, b)$ and $(b, a)$ represent                                                               | the same point in the coordinate  | Hen                             | ce, (c) is the correct and                                       | swer.                                  |
| plane, then, is possible $(\Delta) = 2$ $h = -2$                                                      | <b>(R)</b> $a = -2$ $b = -2$      |                                 | Mathematics -                                                    | Section B (мсq)                        |
| (A) $a = 2, b = -2$<br>(C) $a = -2, b = 2$                                                            | (D) $a = 2, b = \frac{1}{2}$      | (41) Find                       | the remainder when $x^3$                                         | $x^3 + 3x^2 + 3x + 1$ is divided by    |
| $\begin{array}{c} (c) \ u = -2, \ v = 2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | $(D) \ u = 2, \ 0 = \frac{1}{2}$  | x +                             | 1                                                                |                                        |
| a = -2, b = -2                                                                                        | נס                                | (A) (                           | )                                                                | (B) 3                                  |
| (26) Evoluato                                                                                         |                                   | (C) 8                           | 8                                                                | (D) 2                                  |
| $205 \times 195$                                                                                      |                                   | Solu                            | ition:(Correct Answer:/                                          | A) $(m+1-0 \rightarrow m-1)$           |
| <b>(A)</b> 39758                                                                                      | <b>(B)</b> 39975                  | And                             | by remainder theorem,                                            | $x + 1 = 0 \Rightarrow x = -1$<br>when |
| <b>(C)</b> 48974                                                                                      | <b>(D)</b> 93541                  | p(x)                            | $x = x^3 + 3x^2 + 3x + 1$ is<br>an ender is $n(-1)$              | s divided by $x + 1$ , then            |
| Solution:(Correct Answer:                                                                             | :B)                               | $\therefore p($                 | $(-1) = (-1)^3 + 3(-1)^2$                                        | +3(-1)+1                               |
| 39975                                                                                                 |                                   | =<br>Thu:                       | $(1 + (3 \times 1) + (-3) + 1)$                                  | = -1 + 3 - 3 + 1 = 0                   |
| (37) In $Fig.$ , coordinates of $P$ a                                                                 | re                                | ind.                            | s, the required remainde                                         |                                        |
| Y<br>1                                                                                                |                                   | (42) If $x^2$                   | +kx+6 = (x+2)(x+5)                                               | (B) for all x, then the value of k is  |
| P 4                                                                                                   |                                   | , (A)<br>(C)                    | _1                                                               | (D) 3                                  |
| - 3                                                                                                   |                                   | (C) ·                           | -1                                                               | (D) 5                                  |
| 0                                                                                                     |                                   | 5010                            | ition.(Correct Answer./                                          | R)                                     |
|                                                                                                       | X                                 | (43) The                        | line joining $A(3,-8)$ and                                       | d $B(3,5)$ intersects the $x$ -axis at |
| -4-3-2-1 1 2                                                                                          | 3 4                               | (A)                             | (0,3)                                                            | <b>(B)</b> (0,5)                       |
| 2                                                                                                     |                                   | (C)                             | (-8,0)                                                           | <b>(D)</b> (3,0)                       |
| 3                                                                                                     |                                   | Solu                            | ition:(Correct Answer:I                                          | D)                                     |
| 4                                                                                                     |                                   | (3,0                            | ))                                                               |                                        |
| <b>(A)</b> (-4,2)                                                                                     | <b>(B)</b> (4, -2)                | (44) Ratio                      | onalise the denominator $\frac{3}{3}$                            | r of the following:                    |
| <b>(C)</b> (2, -4)                                                                                    | <b>(D)</b> (-2,4)                 | $\frac{1}{2-\sqrt{2}}$          | $\frac{1}{3}$                                                    | ( <b>D</b> ) $0 + 4\sqrt{2}$           |
| Solution:(Correct Answer:                                                                             | :D)                               | (A) 2<br>(C) 2                  | $z + 9\sqrt{2}$                                                  | (b) $9 + 4\sqrt{3}$                    |
| Point P lies in the second c<br>and r -axes are $-2$ and 4                                            | quadrant and its distances from y | (C)<br>Solu                     | $1 + 5\sqrt{5}$                                                  |                                        |
| So, its coordinates are $(-2)$                                                                        | ,4).                              | $\frac{2+\sqrt{2}}{2+\sqrt{2}}$ |                                                                  | נט                                     |
| (38) The linear equation $2x - 5y$                                                                    | q = 7 has                         | 2-<br>$=\frac{2}{2}$            | $\frac{\sqrt{3}}{\sqrt{2}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$ |                                        |
| (A) A unique solution                                                                                 | (B) Two solutions                 | $=\frac{2}{\pi}$                | $-\sqrt{3}$ 2+ $\sqrt{3}$<br>$(2+\sqrt{3})^2$                    |                                        |
| (C) No solution                                                                                       | (D) Infinitely many solutions     | $=\frac{4}{4}$                  | $\frac{4}{4} = -(\sqrt{3})^{2}$                                  |                                        |
| Solution:(Correct Answer:                                                                             | :D)                               | $=\frac{7}{2}$                  | $\frac{+4\sqrt{3}}{1}$ _                                         |                                        |
| 2x - 5 = 7 is a linear equation in two variables k                                                    | tion in two variables. A linear   | =7                              | $+4\sqrt{3}$                                                     |                                        |
|                                                                                                       | las infinitely many solution.     | (45) Fill i                     | n the blanks so as to ma                                         | ke each of the following               |
| (39) Degree of the polynomial 4                                                                       | $4x^4 + 0x^3 + 0x^5 + 5x + 7$ is  | state $\sqrt{2}$ ·              | ements true (Final answ $\sqrt{3}\cdot\sqrt{6}=\ldots\ldots$     | er only)                               |
| (A) 7<br>(C) 5                                                                                        | (B) 3                             | (A) (                           | 3                                                                | <b>(B)</b> 8                           |
| C) 5                                                                                                  | (U) 4<br>(U) 4                    | (C)                             | 1                                                                | <b>(D)</b> 15                          |
| The height power of the va                                                                            | ariable in a polynomial is called | Solu                            | ition:(Correct Answer:/                                          | A)                                     |
| the degree of the polynom                                                                             | ial.                              | 6                               |                                                                  |                                        |
| Highest power of x is 4, so                                                                           | the degree of the given           | (46) Abs                        | cissa of all the points on                                       | the $x$ -axis is                       |
| polynomial is 4                                                                                       |                                   | (A) (                           | )                                                                | (B) any number                         |
| (40) $2\sqrt{3} + \sqrt{3}$ is equal to                                                               |                                   | (C)                             | 1                                                                | (D) 2                                  |
| (A) $2\sqrt{6}$                                                                                       | <b>(B)</b> 6                      | Solu                            | ition:(Correct Answer:                                           | B)                                     |
| <b>(C)</b> 3√3                                                                                        | (D) $4\sqrt{6}$                   | Abs                             | cissa of all the points on                                       | I the $x$ -axis is any number.         |

(47) ..... is one of the factors of  $p(x) = x^3 - 3x^2 + 7x - 5$ (A) −1 (A) x - 3(B) x + 1(C) x - 5(D) x - 1(C) 2 Solution:(Correct Answer:D) x - 1(48) Point (-3, 5) lies in the (A) first quadrant (B) second quadrant (A)  $-\sqrt{2}+1$ (C) third quadrant (D) fourth quadrant (C)  $\sqrt{2} + 1$ Solution:(Correct Answer:B) In the point (-3, 5) abscissa is negative and ordinate is positive. So, it lies in the second quadrant. or (49) If the coordinates of the two points are P(-2,3) and Q(-3,5), then (abscissa of P) (abscissa of Q) is  $\Rightarrow$ (A) −5 (B) −1 (C) −2 **(D)** 1 **(A)** 2 (C) 6 Solution:(Correct Answer:D) Abscissa of P(-2,3) = -2Abscissa of Q(-3, 5) = -3 $\therefore$  (Abscissa of P) – (Abscissa of Q) = -2 - (-3) = -2 + 3 = 1(50) Find the value of a: (A) 2  $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (C) -1 **(A)** 11 (B) −11 (D) 13 (C) 12 Solution:(Correct Answer:A)  $L.H.S. = \frac{5+2\sqrt{3}}{7+4\sqrt{3}} = \frac{5+2\sqrt{3}}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$  $=\frac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7-4\sqrt{3})}$  $(7)^2 - (4\sqrt{3})^2$  $\Rightarrow$  $=\frac{35-20\sqrt{3}+14\sqrt{3}-24}{2}$ 49 - 48 $=\frac{11-6\sqrt{3}}{1}=11-6\sqrt{3}$ Now,  $11 - 6\sqrt{3} = a - 6\sqrt{3}$ (A) 5 a = 11(C) 1 (51) Simplify:  $\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}$ (A) 10 **(B)** 0 (C) −1 **(D)** 1 Solution:(Correct Answer:D)  $3\sqrt{2}$  $7\sqrt{3}$  $2\sqrt{5}$  $\frac{1}{\sqrt{15}+3\sqrt{2}}$  $\overline{\sqrt{10}} + \sqrt{3}$  $\overline{\sqrt{6}+\sqrt{5}}$ polynomials  $= \frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} \times \frac{\sqrt{10}+\sqrt{3}}{\sqrt{10}-\sqrt{3}} - \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} \times \frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}} - \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} \times \frac{\sqrt{15}-3\sqrt{2}}{\sqrt{15}-3\sqrt{2}} \times \frac{\sqrt{15}-3\sqrt{2}}{\sqrt{15}-3\sqrt{2}}$  $4 + 7x + 3x^2$  $=\frac{7\sqrt{3}(\sqrt{10}-\sqrt{3})}{10-3}-\frac{2\sqrt{5}(\sqrt{6}-\sqrt{5})}{6-5}=\frac{3\sqrt{2}(\sqrt{15}-3\sqrt{2})}{15-18}$ (A) 11  $=\sqrt{3}(\sqrt{10}-\sqrt{3})-2\sqrt{5}(\sqrt{6}-\sqrt{5})+\sqrt{2}(\sqrt{15}-3\sqrt{2})$ **(C)** 3  $=\sqrt{30-3}-2\sqrt{30}+10+\sqrt{30}-6$  $=2\sqrt{30}-9-2\sqrt{30}+10=1$ 3 (52) Every rational number is (A) a natural number (B) a real number (A) 8 (C) an integer (D) a whole number (C) 4 Solution:(Correct Answer:B) We know that rational and irrational numbers taken  $\sqrt{8} + \sqrt{12}$ together are known as real numbers. Therefore, every real  $=\frac{4\sqrt{2}+4\sqrt{3}}{2\sqrt{2}+2\sqrt{3}}=\frac{4(\sqrt{2}+\sqrt{3})}{(2\sqrt{2}+\sqrt{3})}=\frac{4}{2}=2$ number is either a rational number or an irrational number.

Hence, every rational number is a real number.

(53) On dividing  $16x^2 - 24x + 9$  by 4x - 3, find the remainder. **(B)** 0 (D) 4 Solution:(Correct Answer:B) (54) Find the value of k, if x - 1 is a factor of p(x) in this case :  $p(x) = kx^2 - \sqrt{2}x + 1$ **(B)**  $\sqrt{2} - 1$ (D)  $-\sqrt{2}-1$ Solution:(Correct Answer:B) Here  $p(x) = kx^2 - \sqrt{2}x + 1$  and g(x) = x - 1 $\therefore$  For (x-1) be a factor of p(x), p(1) should be equal to 0. since  $p(1) = k(1)^2 - \sqrt{2}(1) + 1$  or  $p(1) = k - \sqrt{2} + 1$  $p(1) = k - \sqrt{2} + 1$   $\therefore k - \sqrt{2} + 1 = 0$  $k = \sqrt{2} - 1$ (55) The degree of polynomial  $5x^2 - 7x - 11$  is..... **(B)** 4 (D) 8 Solution:(Correct Answer:A) (56) Find the value of m so that 2x - 1 be a factor of  $8x^4 + 4x^3 - 16x^2 + 10x + m.$ **(B)** -2 (D)  $-\frac{1}{2}$ Solution:(Correct Answer:B) Let  $p(x) = 8x^4 + 4x^3 - 16x^2 + 10x + m$ . As (2x-1) is a factor of p(x) $p\left(\frac{1}{2}\right) = 0$  [By factor theorem]  $8\left(\frac{1}{2}\right)^4 + 4\left(\frac{1}{2}\right)^3 - 16\left(\frac{1}{2}\right)^2 + 10\left(\frac{1}{2}\right) + m = 0$  $8\left(\frac{1}{16}\right) + 4\left(\frac{1}{8}\right) - 16\left(\frac{1}{4}\right) + 5 + m = 0$  $\frac{1}{2} + \frac{1}{2} - 4 + 5 + m = 0$  $\tilde{2} + \tilde{m} = 0 \Rightarrow m = -2$ (57) Find the remainder when  $x^3 + 3x^2 + 3x + 1$  is divided by x. **(B)** 4 (D) 0 Solution:(Correct Answer:C) We have  $p(x) = x^3 + 3x^2 + 3x + 1$  and the zero of x is 0.  $\therefore p(0) = (0)^3 + 3(0)^2 + 3(0) + 1 = 0 + 0 + 0 + 1 = 1$ Thus, the required remainder = 1. (58) Write the coefficients of  $x^2$  in each of the following **(B)** 6 (D) 1 Solution:(Correct Answer:C) (59) The value of  $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$  is equal to (B)  $\sqrt{2}$ **(D)** 2 Solution:(Correct Answer:D)  $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}} = \frac{\sqrt{16\times2}+\sqrt{16\times3}}{\sqrt{4\times2}+\sqrt{16\times3}}$  $\sqrt{4\times 2} + \sqrt{4\times 3}$ 

Hence, (d) is the correct answer.

| (60) | If $x = 2y + 6$ , then what is $x^3 - 8y^3 - 36xy - 216?$ | the value of                                     | (69) | Solid calcium oxide re                            | eacts vigorously with water to form<br>companied by liberation of heat. This |
|------|-----------------------------------------------------------|--------------------------------------------------|------|---------------------------------------------------|------------------------------------------------------------------------------|
|      | (A) 1                                                     | <b>(B)</b> 0                                     |      | process is called slaking                         | ng of lime. Calcium hydroxide dissolves                                      |
|      | (C) 3                                                     | <b>(D)</b> 4                                     |      | in water to form its so<br>the following is (are) | olution called lime water. Which among<br>true about slaking of lime and the |
|      | Solution:(Correct Answei                                  | r:B)                                             |      | solution formed?                                  |                                                                              |
|      | 0                                                         |                                                  |      | ( <i>i</i> ) It is an endotherm                   | c reaction                                                                   |
|      | Science - Se                                              | ection A (MCO)                                   |      | (iii) The $pH$ of the re                          | sulting solution will be more than                                           |
|      |                                                           |                                                  |      | (iv) The $pH$ of the res                          | sulting solution will be less than seven                                     |
| (61) | Which of the following me<br>nature?                      | etals is obtained in free state in               |      | (A) $(ii)$ and $(iii)$                            | (B) $(i)$ and $(ii)$                                                         |
|      | (A) Fe                                                    | <b>(B)</b> Al                                    |      | (C) $(i)$ and $(iv)$                              | (D) $(iii)$ and $(iv)$                                                       |
|      | <b>(C)</b> Au                                             | (D) <i>Ca</i>                                    |      | Solution:(Correct An                              | swer:A)                                                                      |
|      | Solution:(Correct Answei                                  | r:C)                                             | (70) | Which of the followin                             | ng is the formula of the iron ore                                            |
| (62) | At which value of $nH$ of the                             | he inner side of the mouth does                  | (70) | haematite?                                        |                                                                              |
| (02) | the decay of teeth take pla                               | ace?                                             |      | (A) $Fe_3O_4$                                     | <b>(B)</b> <i>FeCO</i> <sub>3</sub>                                          |
|      | (A) Lower than $6.5$                                      | (B) Higher than 7.3                              |      | (C) $Fe_2O_3$                                     | (D) $FeS_2$                                                                  |
|      | <b>(C)</b> Lower than 5.5                                 | (D) Higher than 5.8                              |      | Solution:(Correct An                              | swer:C)                                                                      |
|      | Solution:(Correct Answer                                  | r:C)                                             | (71) | Which type of compo                               | ound is ethyl acetate?                                                       |
| (63) | About % impurity ren                                      | nains in alumina obtained by                     |      | (A) Ketone                                        | (B) Carboxyl                                                                 |
| ( )  | Bayer's method.                                           |                                                  |      | (C) Ester                                         | (D) Halide                                                                   |
|      | (A) 99%                                                   | (B) 100%                                         |      | Solution:(Correct An                              | swer:C)                                                                      |
|      | <b>(C)</b> 99.5%                                          | (D) 95.5%                                        | (72) | Which of the followin                             | a pairs will give displacement                                               |
|      | Solution:(Correct Answer                                  | r:C)                                             | (72) | reactions ?                                       | ig pairs will give displacement                                              |
| (64) | With which of the followir                                | ng does the element carbon not                   | ()   | (A) $NaCl$ solution an                            | d copper metal                                                               |
|      | give reaction?                                            |                                                  |      | (B) $MgCl_2$ solution a                           | nd aluminium metal                                                           |
|      | (A) Dictionite gas                                        | (B) Dioxygen gas                                 |      | (C) $FeSO_4$ solution a                           | nd silver metal                                                              |
|      |                                                           |                                                  |      | <b>(D)</b> $AgNO_3$ solution a                    | and copper metal                                                             |
|      | Solution:(Correct Answei                                  | r:D)                                             |      | Solution:(Correct An                              | swer:D)                                                                      |
| (65) | What is the chemical form                                 | ula of oleum?                                    |      | $AgNO_3$ solution and                             | copper metal                                                                 |
|      | (A) $H_2SO_3$                                             | <b>(B)</b> $H_2S_2O_7$                           | (73) | Which of the followin                             | ng statements is true for acids ?                                            |
|      | (C) $H_2Cr_2O_7$                                          | (D) $H_3PO_4$                                    |      | (A) Bitter and change                             | e red litmus to blue                                                         |
|      | Solution:(Correct Answei                                  | r:B)                                             |      | (B) Sour and change I                             | red litmus to blue                                                           |
| (66) | Which solution will be bas                                | ic?                                              |      | (C) Bitter and change                             | blue litmus to red                                                           |
|      | (A) $[H_3O^+] = 10^{-5} M$                                | <b>(B)</b> $[H_3O^+] = 10^{-12} M$               |      | (D) Sour and change I                             | blue litmus to red                                                           |
|      | (C) $[H_3O^+] = 10^{-7} M$                                | (D) $[H_3O^+] = 10^{-4} M$                       |      | Solution:(Correct An                              | iswer:D)                                                                     |
|      | Solution:(Correct Answei                                  | r:B)                                             | (74) | What happons when                                 | calcium is treated with water 2                                              |
| (67) | What is the molecular form                                | nula of calcium silicate (slag)?                 | (74) | (i) It does not react w                           | vith water                                                                   |
| (07) | (A) $CaSiO_3$                                             | (B) $CaSiO_2$                                    |      | ( <i>iii</i> ) It reacts violently                | with water                                                                   |
|      | <b>(C)</b> <i>Na</i> <sub>2</sub> <i>SiO</i> <sub>3</sub> | (D) <i>CaCO</i> <sub>3</sub>                     |      | (iv) Bubbles of hydro                             | ogen gas formed stick to the surface of                                      |
|      | Solution:(Correct Answei                                  | r:A)                                             |      | calcium<br>(A) $(i)$ and $(in)$                   | (B) $(iiii)$ and $(iii)$                                                     |
|      |                                                           | -                                                |      | (C) $(i)$ and $(ii)$                              | (D) $(ii)$ and $(iv)$                                                        |
| (68) | One of the constituents of hydrogencarbonate, the o       | t baking powder is sodium<br>ther constituent is |      |                                                   |                                                                              |
|      | (A) hydrochloric acid                                     | (B) sulphuric acid                               |      | solution:(Correct An                              | iswal: <b>p)</b>                                                             |
|      | (C) acetic acid                                           | (D) tartaric acid                                | (75) | The electronic configu                            | urations of three elements $X, Y$ and $Z$                                    |
|      | Solution:(Correct Answei                                  | r:D)                                             |      | are $X - \{2, 8\} : Y - \{2, 5\}$                 | 8, 7} and $Z - \{2, 8, 2\}$ . Which of the                                   |
|      | -                                                         |                                                  | 21   | (-, ~, / <b>,</b> ( <b>-</b> , )                  | , ,                                                                          |

|     | following is correct ?                                                                                                        |                                                          |              | So                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|-------------------------------|
|     | (A) X is a metal                                                                                                              |                                                          | (02)         | 14/                           |
|     | <b>(B)</b> $Y$ is a non-metal and $Z$                                                                                         | is a metal                                               | (82)         | (A)                           |
|     | (C) Z is a non-metal                                                                                                          |                                                          |              | (C)                           |
|     | (D) Y is a metal                                                                                                              |                                                          |              | 5                             |
|     | Solution:(Correct Answer:                                                                                                     | B)                                                       |              | 30                            |
| (76 | ) Which among the following<br>(i) $H_3C - CH_2 - CH_2 - C$<br>(ii) $H_3C - C \equiv C - CH_3$<br>$H_3C - CH - CH_3$<br>()    | are unsaturated hydrocarbons ? $^{2}H_{3}$               | (83)         | WI<br>no<br>(A)<br><b>(C)</b> |
|     | $(iii)$ $CH_3$                                                                                                                |                                                          |              | So                            |
|     | $H_3C - C = CH_2$                                                                                                             |                                                          | (0.4)        | 14/                           |
|     | $(iv)$ $CH_3$                                                                                                                 |                                                          | (84)         | (i) $(ii)$                    |
|     | (A) $(i)$ and $(iii)$                                                                                                         | (B) $(ii)$ and $(iii)$                                   |              | (ii)                          |
|     | (C) $(iii)$ and $(iv)$                                                                                                        | (D) $(ii)$ and $(iv)$                                    |              | (A)                           |
|     | Solution:(Correct Answer:                                                                                                     | D)                                                       |              | (C)                           |
| (77 | ) Calcium phosphate is preser<br>(A) acidic                                                                                   | nt in tooth enamel. Its nature is<br><b>(B)</b> basic    |              | So                            |
|     | (C) neutral                                                                                                                   | (D) amphoteric                                           | (85)         | Or                            |
|     | Solution:(Correct Answer:                                                                                                     | B)                                                       |              | ca<br>(A)                     |
| (78 | ) Which among the following                                                                                                   | allovs contain mercury as one of                         | $\mathbf{X}$ | (C)                           |
| (   | its constituents ?<br>(A) Stainless steel                                                                                     | 0                                                        |              | So                            |
|     | (B) Alnico                                                                                                                    | 10                                                       | (86)         | W                             |
|     | (C) Solder                                                                                                                    |                                                          |              | (A)                           |
|     | (D) Zinc amalgam                                                                                                              |                                                          |              | (C)                           |
|     | Solution:(Correct Answer:                                                                                                     | D)                                                       |              | So                            |
| (79 | ) Name the sodium compoun hard water.                                                                                         | d which is used for softening                            | (87)         | lde                           |
|     | (A) $Mg(OH)_2$                                                                                                                | (B) $Ca(OH)_3$                                           |              | (A)                           |
|     | (C) $Al_2O_3$                                                                                                                 | <b>(D)</b> $Na_2CO_3 \cdot 10H_2O$                       |              | (B)                           |
|     | Solution:(Correct Answer:<br>Washing soda $(Na_2CO_3 \cdot 1)$<br>water.                                                      | <b>D)</b><br>$0H_2O)$ is used for softening hard         |              | (C)                           |
| (80 | ) Buckminsterfullerene is an a<br>(A) phosphorus                                                                              | llotropic form of<br>(B) sulphur                         |              | (D)<br>So                     |
|     | (C) tin                                                                                                                       | (D) carbon                                               |              |                               |
|     | Solution:(Correct Answer:                                                                                                     | D)                                                       | (88)         | W                             |
| (81 | ) Common salt besides being<br>as the raw material for maki<br>(i) washing soda<br>(ii) bleaching powder<br>(iii) baking soda | used in kitchen can also be used<br>ng                   |              | (A)<br>(B)<br>(C)<br>(D)      |
|     | (iv) slaked lime<br>(A) $(i)$ and $(ii)$                                                                                      | <b>(B)</b> ( <i>i</i> ), ( <i>ii</i> ) and ( <i>iv</i> ) |              |                               |
|     |                                                                                                                               |                                                          |              |                               |

(C) (*ii*) and (*iii*)

### lution:(Correct Answer:C) hich of the following is acidic in nature ? Lime water (B) Human blood Lime juice (D) Antacid lution:(Correct Answer:C) hose acid-base theory can be applied to aqueous and n-aqueous solutions? **Robert Boyle** (B) Arrhenius Bronsted-Lowry (D) Rutherford lution:(Correct Answer:C) hich of the following are not ionic compounds? KCl) HCl $i) CCl_4$ v) NaCl(*ii*) and (*iii*) (B) (i) and (ii)(iii) and (iv)(D) (i) and (iii)lution:(Correct Answer:A) e who is habituated to drinking alcohol, is given medicine lled ..... Diclofenac sodium (B) Aspirin Paracetamol (D) Disulfiram lution:(Correct Answer:D) hat type of substance is $NH_3$ ? Strong acid (B) Weak acid Strong base (D) Weak base lution:(Correct Answer:D) entify the correct representation of reaction occurring ring chloralkali process $2NaCl(l) + 2H_2O(l) \rightarrow 2NaOH(l) + Cl_2(g) + H_2(g)$ $2NaCl(aq) + 2H_2O(l) \rightarrow 2NaOH(aq) + Cl_2(g) + H_2(g)$ $2NaCl(aq) + 2H_2O(l) \rightarrow$ $2NaOH(aq) + Cl_2(aq) + H_2(aq)$ $2NaCl(aq)+2H_2O(aq) \rightarrow 2NaOH(aq)+Cl_2(g)+H_2(g)$ lution:(Correct Answer:B) hich one of the following processes involve chemical actions? Storing of oxygen gas under pressure in a gas cylinder Liquefaction of air Keeping petrol in a china dish in the open Heating copper wire in presence of air at high temperature

#### Solution:(Correct Answer:D)

(D) (i), (iii) and (iv)

(89) Match the chemical substances given in Column (A) with their appropriate application given in Column (B)

| and abbieburge abbuernen 3 en miesenni |                                          |  |  |
|----------------------------------------|------------------------------------------|--|--|
| $Column\left(A ight)$                  | Column (B)                               |  |  |
| (A) Bleaching powder                   | (i) Preparation of glass                 |  |  |
| (B) Baking soda                        | $(ii)$ Production of $H_2$<br>and $Cl_2$ |  |  |
| (C) Washing soda                       | (iii) Decolourisation                    |  |  |
| (D) Sodium chloride                    | (iv) Antacid                             |  |  |
|                                        |                                          |  |  |

(A) A - (iii), B - (iv), C - (i), D - (ii)(B) A - (iii), B - (ii), C - (iv), D - (i)

(C) A - (ii), B - (i), C - (iv), D - (iii)

(D) A - (ii), B - (iv), C - (i), D - (iii)

### Solution:(Correct Answer:A)

(90) If copper is kept open in air, it slowly loses its shining brown surface and gains a green coating. It is due to the formation of

| (A) CuS0 | O <sub>4</sub> ( | (B) | CuO      |
|----------|------------------|-----|----------|
| (C) Cu(N | $(NO_3)_2$ (     | D)  | $CuCO_3$ |

### Solution:(Correct Answer:D)

(91) Well defined nucleus is absent in

| (A) blue green algae | (B) diatoms |
|----------------------|-------------|
|                      |             |

(C) algae (D) yeast

### Solution:(Correct Answer:A)

Blue green algae belong to monera which are prokaryotes and hence welldefined nucleus in absent in them.

- (92) Find out the false sentences
  - (A) Golgi apparatus is involved with the formation of lysosomes
  - (B) Nucleus, mitochondria and plastid have DNA; hence they are able to make their own structural proteins
  - (C) Mitochondria is said to be the power house of the cell as ATP is generated in them
  - (D) Cytoplasm is called as protoplasm

### Solution:(Correct Answer:A)

Golgi apparatus is involved in synthesis and storage of certain biomolecules and has no role to play in the formation of lysosomes.

- (93) In taxonomic hierarchy family comes between
  - (A) Class and Order (B) Order and Genus
  - (C) Genus and Species

(D) Division and Class

(D)  $45 kg m s^{-1}$ 

### Solution:(Correct Answer:B)

The sequence is : Division  $\rightarrow$  Class  $\rightarrow$  Order  $\rightarrow$  Family  $\rightarrow$ Genus  $\rightarrow$  Species.

(94) How much momentum will a dumb-bell of mass 10 kgtransfer to the floor if it falls from a height of  $80 \, cm$ ? Take its downward acceleration to be  $10 \, m \, s^{-2}$ . (A)  $25 kg m s^{-1}$ 

```
(B) 49 kg m s^{-1}
```

(C)  $40 \, kg \, m \, s^{-1}$ 

Solution:(Correct Answer:C)

Mass of the dumbbell, m = 10 kgDistance covered by the dumbbell,  $s = 80 \ cm = 0.8 \ m$ Acceleration in the downward direction,  $a = 10 m/s^2$ Initial velocity of the dumbbell, u = 0Final velocity of the dumbbell (when it was about to hit the floor) = vAccording to the third equation of motion:  $v^2 = u^2 + 2as$  $v^2 = 0 + 2(10)0.8$ v = 4 m/sHence, the momentum with which the dumbbell hits the floor is = mv $= 10 \times 4\,kg\,m\,s^{-1}$ 

 $=40 \, kg \, m \, s^{-1}$ 

- (95) Which cell organelle plays a crucial role in detoxifying many poisons and drugs in a cell?
  - (A) Golgi apparatus
  - (B) Lysosomes
  - (C) Smooth endoplasmic reticulum
  - (D) Vacuoles

#### Solution:(Correct Answer:C)

In the river cells of vertebrate, SER plays an important role in detoxifying many poisons and drugs.

(96) Two persons manage to push a motorcar of mass  $1200 \, kg$  at a uniform velocity along a level road. The same motorcar can be pushed by three persons to produce an acceleration of  $0.2 m s^{-2}$ . With what force(in N) does each person push the motorcar? (Assume that all persons push the motorcar with the same muscular effort.)

| <b>(A)</b> 240 | <b>(B)</b> 244 |
|----------------|----------------|
| (C) 248        | (D) 225        |

#### Solution:(Correct Answer:A)

Mass of the motor car = 1200 kqOnly two persons manage to push the car. Hence, the acceleration acquired by the car is given by the third person alone.

Acceleration produced by the car, when it is pushed by the third person,

 $a = 0.2 \, m/s^2$ 

(A) Haeckel

Let the force applied by the third person be F. From Newton's second law of motion:

Force = Mass  $\times$  Acceleration

 $F = 1200 \times 0.2 = 240 N$ 

Thus, the third person applies a force of magnitude 240 N. Hence, each person applies a force of 240 N to push the motor car.

- (97) Cell arises from pre-existing cell was stated by
  - (B) Virchow
  - (C) Hooke (D) Schleiden

### Solution:(Correct Answer:B)

This postulation of Virchow made an addition to the earlier cell theory.



| (105)                                                                                                                                         | Which of the following doe:<br>maturity ?<br>(A) Vessel                                                                                                                              | s not lose their nucleus at                                                                                         | (111) Which of the f<br>motion of a m<br>(A)                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                                                               | (C) Companion cells                                                                                                                                                                  | (D) Sieve tube cells                                                                                                |                                                                                          |
|                                                                                                                                               | Solution:(Correct Answer:<br>Companion cells                                                                                                                                         |                                                                                                                     | Distance<br>(m)                                                                          |
| (106)                                                                                                                                         | A train is travelling at a spee<br>applied so as to produce a $u$<br>$-0.5 m s^{-2}$ . Find how far(in<br>brought to rest.<br>(A) 625                                                | ed of 90 km h <sup>-1</sup> . Brakes are<br>iniform acceleration of<br>m) the train will go before it is<br>(B) 225 | Distance (D)                                                                             |
|                                                                                                                                               |                                                                                                                                                                                      | (U) 750                                                                                                             |                                                                                          |
|                                                                                                                                               | Solution:(Correct Answer:/<br>Initial speed of the train, $u =$<br>Final speed of the train, $v =$<br>Acceleration $= -0.5 ms^{-2}$                                                  | A)<br>= $90 \ km/h = 25 \ m/s$<br>0 (finally the train comes to rest)                                               |                                                                                          |
|                                                                                                                                               | According to third equation<br>$v^2 = u^2 + 2as$<br>$(0)^2 = (25)^2 + 2(-0.5) s$<br>Where, <i>s</i> is the distance cover<br>$s = \frac{25^2}{2} = 625 m$                            | of motion:<br>vered by the train                                                                                    | Solution:(Corr<br>Distance is inc<br>slanting straig<br>motion.                          |
|                                                                                                                                               | The train will cover a distan rest.                                                                                                                                                  | ce of $625m$ before it comes to                                                                                     | (112) Cell wall of wh<br>(A) Bacteria                                                    |
| (107) Convert the following temp<br>a. 300 K<br>b. 573 K                                                                                      |                                                                                                                                                                                      | erature to celsius scale :                                                                                          | (C) Mango tre<br>Solution:(Corr                                                          |
|                                                                                                                                               | (A) $27^{\circ}C$ and $300^{\circ}C$                                                                                                                                                 | (B) $270  {}^oC$ and $30  {}^oC$                                                                                    | cellulose. But                                                                           |
| (C) $25  ^oC$ and $330  ^oC$                                                                                                                  | (C) $25  {}^{o}C$ and $330  {}^{o}C$                                                                                                                                                 | (D) $40 {}^{o}C$ and $270 {}^{o}C$                                                                                  | (113) The dead elem                                                                      |
|                                                                                                                                               | Solution:(Correct Answer:/<br>By the use of given formula<br>temperature to Celsius.<br>$T \ K - 273 = t \ ^oC$<br>(a) $300 \ K - 273 = 27 \ ^oC$<br>(b) $573 \ K - 273 = 300 \ ^oC$ | <b>A)</b><br>, we can convert the Kelvin                                                                            | (A) companion<br>(C) phloem pa<br><b>Solution:(Cor</b><br>phloem fibres                  |
| (100)                                                                                                                                         | Pool organs are absont in                                                                                                                                                            |                                                                                                                     | (114) Which of the f                                                                     |
| <ul> <li>(A) Mollusca</li> <li>(C) Coelenterata</li> <li>Solution:(Correct Answer Coelenterates show tis real organs are absent is</li> </ul> | (A) Mollusca                                                                                                                                                                         | (B) Arthropoda                                                                                                      | ( <i>i</i> ) considered<br>( <i>ii</i> ) establishe                                      |
|                                                                                                                                               | (C) Coelenterata                                                                                                                                                                     | (D) Echinodermata                                                                                                   | as a hydrogen                                                                            |
|                                                                                                                                               | Solution:(Correct Answer:<br>Coelenterates show tissue I<br>real organs are absent in the                                                                                            | <b>C)</b><br>evel of organization and hence<br>em.                                                                  | ( <i>iv</i> ) vas in ag<br>( <i>iv</i> ) was in ag<br>(A) ( <i>i</i> ) and ( <i>ii</i> ) |
| (109)                                                                                                                                         | Elements with valency 1 are                                                                                                                                                          |                                                                                                                     | (C) (i) and (iv                                                                          |
| (105) Ele<br>(A)<br>(C)<br>So                                                                                                                 | (A) always metals                                                                                                                                                                    | (B) always metalloids                                                                                               | Solution:(Cor                                                                            |
|                                                                                                                                               | (C) always non-metals                                                                                                                                                                | (D) either metals or<br>non-metals                                                                                  | deflected by t<br>positively cha                                                         |
|                                                                                                                                               | Solution:(Correct Answer:                                                                                                                                                            | D)                                                                                                                  | electrons are a                                                                          |
|                                                                                                                                               | If an element show positive otherwise it is a nonmetal.                                                                                                                              | valency then it is a metal;                                                                                         | (115) Arun has prep                                                                      |
| (110)                                                                                                                                         | Contractile proteins are fou                                                                                                                                                         | nd in                                                                                                               | represents the                                                                           |
|                                                                                                                                               | (A) bones                                                                                                                                                                            | (B) blood                                                                                                           | (a) $0.01 g$ of N<br>(b) $0.11 a$ of N                                                   |
|                                                                                                                                               | (C) muscles Solution:(Correct Answer:                                                                                                                                                | (D) cartilage<br>C <b>)</b>                                                                                         | $(c) 0.11 g \text{ of } N \\ (c) 1.00 g \text{ of } N \\ (d) 0.10 g \text{ of } N$       |
|                                                                                                                                               | Muscles have the ability of contractile proteins are four                                                                                                                            | contraction and hence<br>nd in them.                                                                                | (A) (a)<br>(C) (c)                                                                       |

# (111) Which of the following figures (Fig.) represents uniform motion of a moving object correctly ?



(C) Mango tree (D) Cactus

### olution:(Correct Answer:A)

Other options show plants in which cell wall is made of cellulose. But cell wall of bacteria is made of peptidoglycan.

- (113) The dead element present in the phloem is
  - companion cells (B) phloem fibres
  - (C) phloem parenchyma (D) sieve tubes

### Solution:(Correct Answer:B)

- (114) Which of the following statements about Rutherford's model of atom are correct ?
  - (i) considered the nucleus as positively charged
  - $\widetilde{(ii)}$  established that the lpha- particles are four times as heavy as a hydrogen atom
  - *iii)* can be compared to solar system
  - *(iv)* was in agreement with Thomson's model

(C) (i) and (iv) (D) only (i)

#### Solution:(Correct Answer:A)

Alpha particles are positively charged and hence were deflected by the nucleus. This showed that nucleus is positively charged. Rutherford also postulated that electrons are arranged around the nucleus; the way planets are arranged around the sun.

(115) Arun has prepared 0.01% (by mass) solution of sodium chloride in water. Which of the following correctly represents the composition of the solutions? (a) 0.01 g of NaCl + 99.99 g of water (b) 0.11 g of NaCl + 100 g of water (c) 1.00 g of NaCl + 100 g of water (d) 0.10 g of NaCl + 99.90 g of water (d) 0.10 g of NaCl + 99.90 g of water (A) (a) (B) (b)

(c) (D) (d)

#### Solution:(Correct Answer:A)

```
\begin{array}{l} \text{Mass \%} = \frac{\text{mass of solute}}{\text{mass of solute + mass of solvent}} \times 100 \\ = \frac{0.01}{0.01+99.99} \times 100 \end{array}
 =\frac{0.01}{100} \times 100
 = 0.01 g
```

- (116) Which among the following is exclusively marine?
  - (A) Echinodermata (B) Porifera
  - (C) Mollusca (D) Pisces

#### Solution:(Correct Answer:A)

Porifera, Mollusca and pisces are found in freshwater also.

- (117) The inertia of an object tends to cause the object
  - (A) to increase its speed
  - (B) to decrease its speed
  - (C) to decelerate due to friction
  - (D) to resist any change in its state of motion

#### Solution:(Correct Answer:D)

Inertia is the property because of which an object resists any change in its state of motion.

- (118) Which of the following cells is found in the cartilaginous tissue of the body?
  - (A) Chondrocytes (B) Basophils
  - (C) Osteocytes (D) Mast cells

#### Solution:(Correct Answer:A)

Mast cells are found in areolar tissue, basophils are found in blood and osteocytes are found in bone.

- (119) Meristematic tissues in plants are
  - (A) localised and dividing cells
  - (B) not limited to certain regions
  - (C) localised and permanent
  - (D) growing in volume

#### Solution:(Correct Answer:A)

Cells of meristematic tissue are dividing cells. Meristematic tissue is present only in those parts which needs to grow.

- (120) Which among the following produce seeds?
  - (A) Thallophyta (B) Bryophyta
  - (C) Gymnosperms (D) Pteridophyta

#### Solution:(Correct Answer:C)

Gymnosperms and angiosperms are seed bearing plants, but plants of lower groups do not bear seeds.