

.

Global Education of Science

Subject : Mathematics, Science Standard : 10,9 Total Mark : 400

the coordinates of *B* are

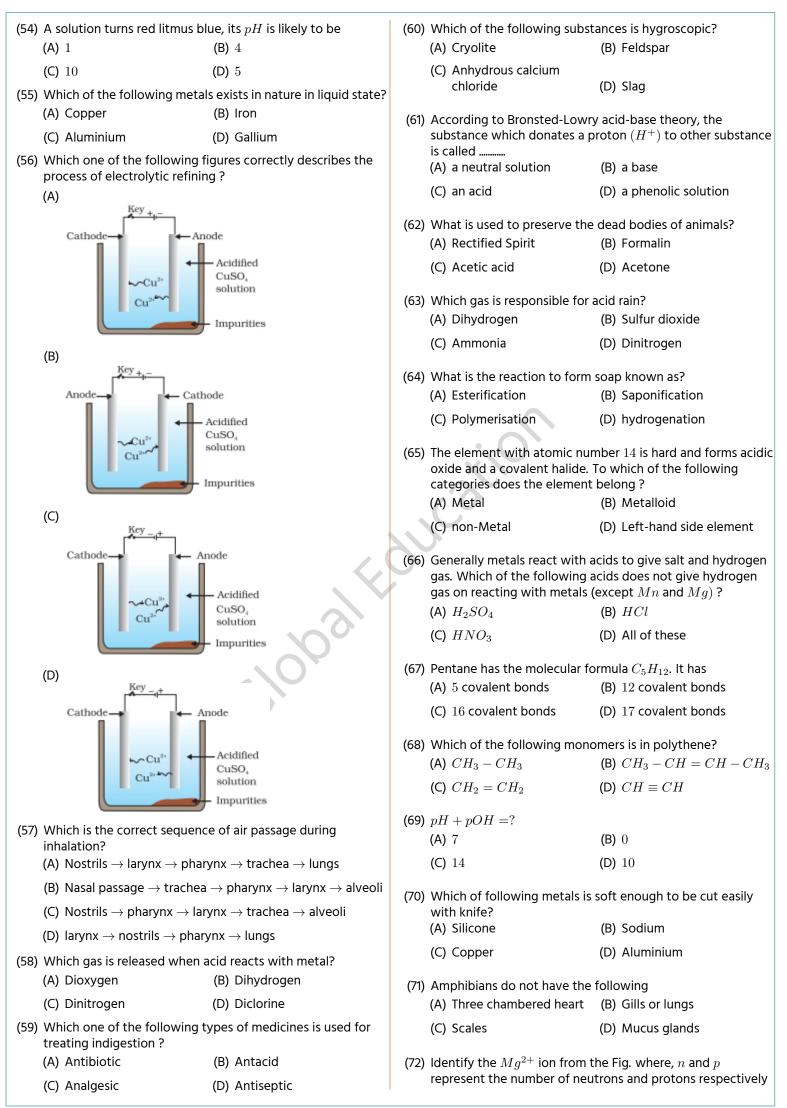
MCQ and Numeric

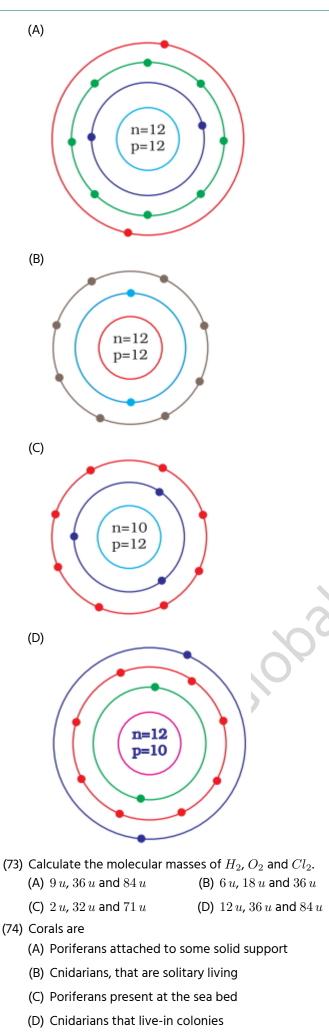
(A) (0,14)

Paper Set : 1 Date : 26-07-2024 Time : 0H:20M

(B) (14,0)

Mathematics - Section A (MCQ)


machema		
a profit of 10% on th taken a profit of 25% would have got <i>Rs</i> .	and a chair for $Rs.1050$, thereby making the table and 25% on the chair. If she ha % on the table and 10% on the chair she 1065. Find the cost price of each. (in	d $p(x) = ax^3 + bx^2 + cx + d; a \neq 0; a, b, c, d \in R$ are α, β and γ
<i>Rs.</i>) (A) 100,900	(B) 100,300	(C) $\frac{bd}{a^2}$ (D) $\frac{ad}{a^2}$
(C) 500, 400	(D) 600,800	(13) If $x^2 + 6x + 10$ is divided by $x + 2$, then the remainder is
	ation, if	(A) -2 (B) 2
roots are equal.		(C) 6 (D) 4
(A) <i>D</i> < 0	(B) $D > 0$	(14) $\ln \Delta ABC, m \angle B = 90, AB = 2x + 3, BC = x + 2$ and
(C) $D = 1$	(D) $D = 0$	AC = 3x - 1. Find the value of x.
-	s on a wall to reach the height of $8 m$, it	
	away from the base of the wall. If the n the wall to reach the height of 6 m,	(C) 4 (D) 2 (15) The roots of quadratic equation $x^2 - 2x - 15 = 0$ are
	its lower end from the base of the wall.	
(A) 8	(B) 10	(C) -5 and 3 (D) 5 and -3
(C) 15	(D) 20	(b) 5 and -3 (16) In a two-digit number, the digit at unit's place is x and the
	en the points $A(-4,-6)$ and $B(6,b)$ is	digit at ten's place is y. then the number is
10, then $b = \dots$		(A) $10x + y$ (B) $x + y$
(A) 4	(B) 3	(C) $10(x+y)$ (D) $10y+x$
(C) -6	(D) -4	(17) 49 students in a class are alloted roll numbers from 1 to 49.
 5) For any A.P., T₂₅ – (A) 5d 	$I_{20} = \dots$ (B) $5a$	Find a roll number such that the sum of all the roll numbers smaller than that is same as the sum of all the roll numbers
(C) 5n	(D) S_5	greater than that.
.,	pairs of linear equations in two variable	(A) 40 (B) 35
	y = -4, 3x + 4y = -6	(C) 30 (D) 25
(A) (2, 3)	(B) (-2, -3)	(18) Solve the following equations by using the general formula,
(C) (-2, 3)	(D) (2, -3)	if the equation has a solution in R : $\frac{1}{x+1} + \frac{2}{x+2} = \frac{4}{x+4}; x \neq 1, -2, -4$
	an equilateral triangle of side $8cm$. (in	(A) $1 + 7\sqrt{3}, 1 - 7\sqrt{3}$ (B) $12 + 2\sqrt{3}, 12 - 2\sqrt{3}$
cm)		(C) $2 + 2\sqrt{3}, 2 - 2\sqrt{3}$ (D) $4 + \sqrt{14}, 4 - \sqrt{14}$
	(B) $4\sqrt{3}$	(b) $2 + 2\sqrt{3}, 2 - 2\sqrt{3}$ (b) $4 + \sqrt{14}, 4 - \sqrt{14}$ (19) For a given A.P., $S_{10} = 50$ and $a = 0.5$. Then, $d = \dots$
(C) $5\sqrt{3}$	(D) $7\sqrt{5}$	$(\Delta) 4$ (B) 3
	$2x^2 + 5x + k = 0$, then $k = \dots$ (B) -3	(C) 2 (D) 1
(A) 3		(20) In which ratio $P(-4,3)$ divides the line segment joining
(C) 2 (a) $\ln \Delta POR = m/O = 0$	(D) -2 90. If $PR = 17$ and $PQ = 8$, then	A(1,-2) and $B(-6,5)$ from A ?
$QR = \dots$	90. If F R = 17 and F Q = 8, then	(A) 6:2 (B) 5:2
(A) 15	(B) 13	(C) $5:6$ (D) $1:3$
(C) 12.5	(D) 9	(21) If $(3,2)$ is one of the solutions of $5x - ay = 7$, then
	entagon having the vertices	$a = \dots$ (A) 4 (B) 6
	(1), (2, -3) and (5, 1)	(C) 12 (D) 1
(A) 40	(B) 30	(22) On dividing $p(x) = 3x^3 - 6x^2 + 5x - 10$ by $(x - 2)$, find the
(C) 20	(D) 10	remainder.
(11) If $P(1, 12)$ divides A	\overline{B} from A in ratio $2:1$ and $A(3,8),$ then	n (A) 1 (B) 2


(C) 3

(D) 0

		number of interwoven is Atharva Veda) is:	osceles triangles in Sriyantra (ii
	(A) 7	-	(B) 8
	(C) 1	1	(D) 9
	(24)	is one of the zeros of p	$\mathbf{p}(x) = x^3 + 7x^2 + 11x + 5$
	(A) 1	L	(B) 5
	(C) -	-5	(D) -1
	(25) Any	point on the line $y = x$ is	s of the form
		(a, -a)	(B) (a, 0)
	(C) ((D) (a, a)
		lid has hape, size and location	(B) size and location
			(D) shape and size
			$-ca = 26$, find $a^2 + b^2 + c^2$.
	(27) II <i>u</i> - (A) 8		(B) 29
	(C) 5	52	(D) 26
	(28) One	of the zeroes of the poly	nomial $2x^2 + 7x - 4$ is
	(A) 2		(B) $-\frac{1}{2}$
	(C)	<u>L</u> 2	(D) -2
	(29) $\sqrt{10}$	$ imes \sqrt{15}$ is equal to	
	(A) ($5\sqrt{5}$	(B) $10\sqrt{5}$
	(C) v	$\sqrt{25}$	(D) $5\sqrt{6}$
		the zero of the polynom	- ()
	(A) 2		(B) 5
	(C)	$(\bar{x}^2 - 3)^2 = 25x^2 + kx + 9$	(D) $\frac{-5}{2}$
	(31) II (3. (A) -	,	(B) 20
	(C) 1	15	(D) -30
	(32) For e	each question, select the	proper option from four
	option op	-	atement true : (Final answer
		$\frac{7}{1+12^2}$ is a / an $\ldots \ldots$ nu	ımber.
	(A) i	rrational	(B) negative
	(C) f	raction	(D) natural
		hout actually calculating $\left(\frac{1}{4}+\left(\frac{1}{3}\right)^3-\left(\frac{5}{6}\right)^3\right)$	the cubes, find the value of :
	(<u>=</u>) (A) =	_ (0)	(B) $\frac{5}{12}$
	(C) -	12	(D) $\frac{7}{12}$
		12	(b) $\overline{12}$ B) for all x , then the value of k i
	(A) 5		(B) 1
	(C) -	-1	(D) 3
			he following polynomials
		$+bx^2 + cx + d$	(D) 9
	(A) 7		(B) 3
	(C) 1	$^{-2} \cdot 3^{2x-6} = 36$, then find	(D) 15
	(36) II 2 (A) 1		(B) 6
	(C) 4		(D) 8
		product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$ e	
	(A)	•	(B) $\sqrt{2}$
	(C) 2	2	(D) $\sqrt[12]{32}$
I			

a (in (38) In ancient India, altars [or vedis] with combinations of shapes like rectangles. triangles and trapeziums were required for				
(A) household rituals (B) educational program (C) public worship (D) Vedic rituals (39) A point both of whose coordinates are negative will li (A) <i>III</i> quadrant (B) <i>I</i> quadrant (C) <i>II</i> quadrant (D) <i>IV</i> quadrant (40) Evaluate (1002) ² (A) 1005041 (B) 1003665 (C) 1004004 (D) 100254 	(in	(38)	shapes like rectangles. triang	-
(39) A point both of whose coordinates are negative will li (A) <i>III</i> quadrant (B) <i>I</i> quadrant (C) <i>II</i> quadrant (D) <i>IV</i> quadrant (40) Evaluate (1002) ² (A) 1005041 (B) 1003665 (C) 1004004 (D) 100254 Mathematics - Section B (NUMERIC) (41) The eighth term of an <i>AP</i> is half its second term and the eleventh term exceeds one third of its fourth term by the 15 th term. (42) Had Ajita scored 10 more marks in her mathematics tere of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she of the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wrown answer. Jayanti answered 120 questions and got 90 m. How many questions did she answer correctly? (46) Find the value of a : $\frac{5\pm 2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) (729) $\frac{3}{3} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depote the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>			•	(B) educational programme
(A) <i>III</i> quadrant (B) <i>I</i> quadrant (C) <i>II</i> quadrant (D) <i>IV</i> quadrant (40) Evaluate (1002) ² (A) 1005041 (B) 1003665 (C) 1004004 (D) 100254 Mathematics - Section B (NUMERIC) (41) The eighth term of an <i>AP</i> is half its second term and the eleventh term exceeds one third of its fourth term by the 15 th term. (42) Had Ajita scored 10 more marks in her mathematics tere of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she get the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every work answer. Jayanti answered 120 questions and got 90 m. How many questions did she answer correctly? (46) Find the value of $a: \frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) (729) ³ = (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depote the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>			(C) public worship	(D) Vedic rituals
(40) Evaluate (1002) ² (A) 1005041 (B) 1003665 (C) 1004004 (D) 100254 Mathematics - Section B (NUMERIC) (41) The eighth term of an <i>AP</i> is half its second term and t eleventh term exceeds one third of its fourth term by the 15 th term. (42) Had Ajita scored 10 more marks in her mathematics te of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she of the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wro answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) (729) $\frac{1}{3} = \dots$ (50) Find the value $\frac{8\frac{1}{8} \times 10\frac{1}{8}}{32^{-\frac{1}{8}}}$ 		(39)	•	-
(1002) ² (A) 1005041 (B) 1003665 (C) 1004004 (D) 100254 (A) The eighth term of an <i>AP</i> is half its second term and t eleventh term exceeds one third of its fourth term by the 15 th term. (41) The eighth accored 10 more marks in her mathematics te of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she g the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wro- answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) (729) $\frac{3}{3} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depo the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>			(C) II quadrant	(D) <i>IV</i> quadrant
(C) 1004004 (D) 100254 (C) 1004004 (D) 100254 (41) The eighth term of an <i>AP</i> is half its second term and t eleventh term exceeds one third of its fourth term by the 15 th term. (42) Had Ajita scored 10 more marks in her mathematics te of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she g the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every word answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of $a:$ $\frac{5+22\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$. (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depo the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>		(40)	$(1002)^2$	
Mathematics - Section B (NUMERIC)(41) The eighth term of an AP is half its second term and t eleventh term exceeds one third of its fourth term by the 15 th term.(42) Had Ajita scored 10 more marks in her mathematics te of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she of the test?(43) The perpendicular distance of the point (6, 2) from the axis is(44) Find the HCF and LCM of 6, 72 and 120, using the p factorisation method.(45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every word answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly?(46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ ereff(48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$.(49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$.(50) Find the value $\frac{8\frac{4}{3} \times 16\frac{4}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depo the (A) cathode (B) Electrolytic solution (C) anode (C) mad (D) bottom of anode(52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca			(A) 1005041	(B) 1003665
(41) The eighth term of an AP is half its second term and t eleventh term exceeds one third of its fourth term by the 15 th term. (42) Had Ajita scored 10 more marks in her mathematics te of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she ge the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wro answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+22\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depo the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>			(C) 1004004	(D) 100254
eleventh term exceeds one third of its fourth term by the 15 th term. (42) Had Ajita scored 10 more marks in her mathematics te of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she of the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wro answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5\pm 2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{2} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depo the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>			Mathematics - Se	ction B (NUMERIC)
of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she get the test? (43) The perpendicular distance of the point (6, 2) from the axis is (44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wrow answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{2} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depote the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>		(41)	eleventh term exceeds one t	
axis is(44) Find the <i>HCF</i> and <i>LCM</i> of 6, 72 and 120, using the p factorisation method.(45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wro answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly?(46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$.(49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (720) $\frac{1}{3} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depo the (A) cathode (C) anode(B) Electrolytic solution (C) anode(C) Na(D) Ca		(42)	of 30 marks, 9 times these ma square of her actual marks. H	arks would have been the
factorisation method. (45) In a competitive examination, one mark is awarded for correct answer while $\frac{1}{2}$ mark is deducted for every wrown answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ 		(43)		f the point $(6,2)$ from the $X-$
correct answer while $\frac{1}{2}$ mark is deducted for every wrown answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ 		(44)		6,72 and $120,$ using the prime
answer. Jayanti answered 120 questions and got 90 m How many questions did she answer correctly? (46) Find the value of a : $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) (729) ^{1/3} = (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ f k is (51) During refining of copper by electrolysis; copper depo the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca		(45)	In a competitive examination	, one mark is awarded for each
$\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$ (47) Find the value of the polynomial $5x - 4x^2 + 3$ at $x = 0$ (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper depothe (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca		8	answer. Jayanti answ $ ilde{r}$ red 120	0 questions and got 90 marks.
er (48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$. (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ Science - Section A (MCQ) f k is (51) During refining of copper by electrolysis; copper deporthe (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca		(46)		
(48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$. (49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$. (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper deporthe (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca		(47)	Find the value of the polynor	mial $5x - 4x^2 + 3$ at $x = 0$.
statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$ (50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ (51) During refining of copper by electrolysis; copper deporthe (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca	r	(48)	Multiply $5\sqrt{3}$ and $4\sqrt{12}$.	
: $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$ 		(49)	statements true (Final answe	-
 f k is (51) During refining of copper by electrolysis; copper depotent the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca 		(50)	$8\frac{1}{3} \times 16\frac{1}{3}$	
 the (A) cathode (B) Electrolytic solution (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca 				
 (C) anode (D) bottom of anode (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca 	k is	(51)	the	
 (52) Which among the following elements has the largest a radii ? (A) K (B) Mg (C) Na (D) Ca 				
radii ? (A) <i>K</i> (B) <i>Mg</i> (C) <i>Na</i> (D) <i>Ca</i>		(52)		
(C) Na (D) Ca		(52)	radii ?	_
			(A) <i>K</i>	(B) <i>Mg</i>
(53) Lack of oxygen in muscles often leads to cramps amor				. ,
cricketers. This results due to		(53)	cricketers. This results due to	
(A) conversion of pyruvate to lactic acid				
(B) conversion of pyruvate to glucose				-
(C) non conversion of glucose to pyruvate				
(D) conversion of pyruvate to ethanol			(D) conversion of pyruvate to	o ethanol

(75) Compute the difference in masses of one mole each of aluminium atoms and one mole of its ions. (Mass of an electron is 9.1×10^{-28} g). Which one is heavier ?

	(A) 0.0016 g	(B) 0.0025 g				
	(C) 0.0035 g	(D) 0.0055 g				
(76)	Match items of column	(A) with items of column (B)				
	$Column\left(A ight)$	Column (B)				
	(a) Naked seed	(A) Angiosperms				
	(b) Covered seed	(B) Gymnosperms				
	(c) Flagella	(C) Bryophytes				
	(d) Marchantia	(D) Euglena				
	(e) Marsilea	(E) Thallophyta				
	(f) Cladophora	(F) Pteridophyta				
	(g) Penicillium	(G) Fungi				
	(A) $(a) - B$; $(b) - A$; $(g) - G$	(c) - D; (d) - C; (e) - F; (f) - E;				
	(B) $(a) - B$; $(b) - C$; $(g) - G$	(c) - D; (d) - A; (e) - E; (f) - F;				
	(C) $(a) - G$; $(b) - C$; $(c) - E$; $(d) - A$; $(e) - D$; $(f) - F$; $(g) - B$					
	(D) $(a) - B$; $(b) - A$; $(g) - C$	(c) - D; (d) - G; (e) - F; (f) - E;				
(77)	(77) Which of these is not related to endoplasmic reticulum ?					
	(A) It can be the site of energy generation					
	(B) It transports materials between various regions in cytoplasm					
	(C) It behaves as transport channel for proteins between nucleus and cytoplasm					
0	(D) It can be the site for some biochemical activities of the cell					

(78) Match items of column (A) with items of column (B)

Column (B)
(A) Arthropoda
(B) Coelenterata
(C) Porifera
(D) Echinodermata
(E) Mollusca
(F) Annelida

(A)
$$(a) - C$$
; $(b) - A$; $(c) - F$; $(d) - B$; $(e) - D$; $(f) - E$

- (B) (a) C; (b) B; (c) F; (d) A; (e) E; (f) D
- (C) (a) B; (b) C; (c) F; (d) E; (e) A; (f) D
- (D) (a) C; (b) D; (c) A; (d) F; (e) E; (f) B
- (79) Meena and Hari observed an animal in their garden. Hari called it an insect while Meena said it was an earthworm. Choose the character from the following which confirms that it is an insect.
 - (A) Bilateral symmetrical body
- (B) Cylindrical body
- (D) Body with little (C) Body with jointed legs segmentation
- (80) A gold sample contains 90% of gold and the rest copper. How many atoms of gold are present in one gram of this sample of gold ?

(A) 8.34×10^{21} (C) 5.51×10^{21}

(D) 3.73×10^{21}

- (81) Pteridophyta do not have
 - (A) root
- (B) stem

(B) 2.77×10^{21}

(C) leaves (D) flowers

(82) Which of the following statement is always correct ?

- (A) An atom has equal number of electrons and protons.
- (B) An atom has equal number of electrons and neutrons.
- (C) An atom has equal number of protons and neutrons.
- (D) An atom has equal number of electrons, protons and neutrons.
- (83) For the following statements, write T for True and F for False.

(a) J.J. Thomson proposed that the nucleus of an atom contains only nucleons.

(b) A neutron is formed by an electron and a proton combining together. Therefore, it is neutral.

(c) The mass of an electron is about $\frac{1}{2000}$ times that of proton.

(d) An isotope of iodine is used for making tincture iodine, which is used as a medicine.

(A) (a) - (T); (b) - (F); (c) - (T); (d) - (F)**(B)** (a) - (F); (b) - (T); (c) - (T); (d) - (F)(C) (a) - (F); (b) - (F); (c) - (T); (d) - (F)

- (D) (a) (T); (b) (F); (c) (F); (d) (T)
- (84) Calculate the number of molecules of sulphur (S_8) present in 16 g of solid sulphur.

(A) 5.59×10^{23}	(B) 0.376×10^{23}

(C) 37.6×10^{23} (D) 3.76×10^{23}

- (85) The proteins and lipids, essential for building the cell membrane, are manufactured by
 - (A) mitochondria (B) golgi apparatus
 - (C) plasma membrane (D) endoplasmic reticulum
- (86) Match the column (A) with the column (B)

	Column (A)	Column (B)					
	(a) Parenchyma	$\left(i ight)$ Thin walled, packing cells					
	(b) Photosynthesis	(ii) Carbon fixation					
	(c) Aerenchyma	(<i>iii</i>) Localized thicken- ings					
	(d) Collenchyma	(iv) Buoyancy					
	(e) Permanent tissue	(v) Sclerenchyma					
	(A) $a - (i)$; $b - (ii)$; $c - (iv)$; $d - (iii)$; $e - (v)$						
	(B) $a - (i)$; $b - (ii)$; $c - (v)$; $d - (iii)$; $e - (iv)$						
	(C) $a - (ii)$; $b - (iii)$; $c - (iv)$; $d - (i)$; $e - (v)$						
	(D) $a - (iii)$; $b - (i)$; $c - (iv)$; $d - (ii)$; $e - (v)$						
(87)	7) The 'Origin of Species' is written by						
	(A) Linnaeus (B) Darwin						
	(C) Hackel (D) Whittaker						
(88)	Differentiation in segmental fashion occurs in						

- (A) Leech (B) Starfish
 - (C) Snails (D) Ascaris

(89) Well defined nucleus is absent in

(C) algae

- (A) blue green algae (B) diatoms
 - (D) yeast
- (90) Following are a few definitions of osmosis Read carefully and select the correct definition
 - (A) Movement of solvent molecules from its higher concentration to lower concentration
 - (B) Movement of water molecules from a region of higher concentration to a region of lower concentration through a semipermeable membrane
 - (C) Movement of solvent molecules from higher concentration to lower concentration of solution through a permeable membrane
 - (D) Movement of solute molecules from lower concentration to higher concentration of solution through a semipermeable membrane

Science - Section B (NUMERIC)

- (91) $10 \, mL$ of a solution of NaOH is found to be completely neutralised by 8 mL of a given solution of HCl. If we take $20 \, mL$ of the same solution of NaOH, the amount of HClsolution (the same solution as before) required to neutralise it will be mL
- (92) Write down the electron distribution of chlorine atom. How many electrons are there in the L shell? (Atomic number of chlorine is 17).
- (93) The ion of an element has 3 positive charges. Mass number of the atom is 27 and the number of neutrons is 14. What is the number of electrons in the ion?
- (94) Calculate the number of neutrons present in the nucleus of an element X which is represented as $^{31}_{15}X$.
- (95) Number of valence electrons in Cl^- ion are :
- (96) If K and L shells of an atom are full, then what would be the total number of electrons in the atom ?

Global Education of Science

Subject: Mathematics, ScienceStandard: 10,9Total Mark: 400

MCQ and Numeric

(Answer Key)

Paper Set	:1
Date	: 26-07-2024
Time	: 0H:20M

Mathematics - Section A (MCQ)

1 - C	2 - D	3 - A	4 - C	5 - A	6 - D	7 - B	8 - B	9 - A	10 - A
11 - A	12 - C	13 - B	14 - A	15 - D	16 - D	17 - B	18 - C	19 - D	20 - B
21 - A	22 - D	23 - D	24 - D	25 - D	26 - A	27 - B	28 - C	29 - D	30 - D
31 - D	32 - D	33 - C	34 - A	35 - B	36 - C	37 - C	38 - C	39 - A	40 - C

Mathematics - Section B (NUMERIC)

Science - Section A (MCQ)

51 - A	52 - A	53 - A	54 - C	55 - D	56 - D	57 - C	58 - B	59 - B	60 - C
61 - C	62 - B	63 - B	64 - B	65 - B	66 - C	67 - C	68 - C	69 - C	70 - B
71 - C	72 - B	73 - C	74 - D	75 - A	76 - A	77 - A	78 - B	79 - C	80 - B
81 - D	82 - A	83 - B	84 - C	85 - D	86 - A	87 - B	88 - A	89 - A	90 - B

Science - Section B (NUMERIC)

91 - 16 **92** - 8 **93** - 10 **94** - 16 **95** - 8 **96** - 10

Global Education of Science

Subject: Mathematics, ScienceStandard: 10,9Total Mark: 400

MCQ and Numeric

Paper Set : 1 Date : 26-07-2024 Time : 0H:20M

(Solutions)

Mathematics - Section A (MCQ) .

(1) Jamila sold a table and a chair for Rs. 1050, thereby making a profit of 10% on the table and 25% on the chair. If she had taken a profit of 25% on the table and 10% on the chair she would have got Rs. 1065. Find the cost price of each. (in Rs.)
(A) 100,900
(B) 100,300

(C) 500,400 **(D)** 600,800

Solution:(Correct Answer:C)

Let the cost price of the table be Rs.x and the cost price of the chair be Rs. yThe selling price of the table, when it is sold at a profit of 10% $= \text{Rs.} x + \frac{10}{100}x = \text{Rs.} \ \frac{110}{100}x$ The selling price of the chair when it is sold at a profit of 25% $= Rs. y + \frac{25}{100}y = \text{Rs. } \frac{125}{100}y$ So, $\frac{110}{100}x + \frac{125}{100}y = 1050$ (1) When the table is sold at a profit of 25%, its selling price = Rs. $\left(x + \frac{25}{100}x\right) =$ Rs. $\frac{125}{100}x$ When the chair is sold at a profit of 10% price = Rs. $(y + \frac{10}{100}y)$ = Rs. $\frac{110}{100}y$ So, $\frac{125}{100}x + \frac{110}{100}y = 1065$ From Equations (1) and (2), we get 110x + 125y = 105000and 125x + 110y = 106500On adding and subtracting these equations, we get 235x + 235y = 211500and 15x - 15y = 1500i.e., x + y = 900....(3)and x - y = 100....(4)Solving Equations (3) and (4), we get x = 500, y = 400So, the cost price of the table is Rs.500 and the cost price of the chair is Rs. 400.

(2) For a quadratic equation, if, then both the roots are equal.

(A) <i>D</i> < 0	(B) $D > 0$
(C) $D = 1$	(D) $D = 0$

Solution:(Correct Answer:D) null

(3) When a ladder leans on a wall to reach the height of 8 m, its lower end rests 6 m away from the base of the wall. If the same ladder leans on the wall to reach the height of 6 m, find the distance of its lower end from the base of the wall. (A) 8 (B) 10

Solution:(Correct Answer:A)

- (4) The distance between the points A(-4,-6) and B(6,b) is 10, then $b = \dots \dots$
 - (A) 4 (B) 3
 - (C) -6 (D) -4

Solution:(Correct Answer:C)

 $\begin{array}{l} AB = 10 \\ \therefore AB^2 = 100 \\ \therefore (-4-6)^2 + (-6-b)^2 = 100 \\ \therefore (-10)^2 + (b+6)^2 = 100 \\ \therefore 100 + (b+6)^2 = 100 \\ \therefore (b+6)^2 = 0 \\ \therefore b+6 = 0 \\ \therefore b = -6 \end{array}$

(5) For any $A.P., T_{25} - T_{20} = \dots$

- (A) 5d (B) 5a
- (C) 5n (D) S_5

Solution:(Correct Answer:A)

(6) Solve the following pairs of linear equations in two variables using graph : x + 2y = -4, 3x + 4y = -6

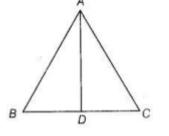
- (A) (2, 3) (B) (-2, -3)
- (C) (-2, 3) (D) (2, -3)

Solution:(Correct Answer:D)

(2, -3)

(7) Find the altitude of an equilateral triangle of side 8 cm. (in cm)

(A) $3\sqrt{3}$	(B) $4\sqrt{3}$
(C) $5\sqrt{3}$	(D) $7\sqrt{5}$


Solution:(Correct Answer:B)

Let ABC be an equilateral triangle of side 8 cm i.e., AB = BC = CA = 8 cm. Draw altitude ADwhich is perpendicular to BC. Then, D is the mid-point of BC.

 $\therefore BD = CD = \frac{1}{2}BC = \frac{8}{2} = 4 cm$ Now, $AB^2 = AD^2 + BD^2$ [by Pythagoras theorem] $\Rightarrow \quad (8)^2 = AD^2 + (4)^2$

- $\Rightarrow 64 = AD^2 + 16$
- $\Rightarrow AD^2 = 64 16 = 48$
- $\Rightarrow \quad AD = \sqrt{48} = 4\sqrt{3} \, cm$

Hence, altitude of an equilateral triangle is $4\sqrt{3}$ cm.

(8)	If -3 is a solution of $2x^2 + 5x$ (A) 3	$k + k = 0$, then $k = \dots$
	(C) 2	(D) -2
		. ,
	Solution:(Correct Answer:B	-
	Substituting $x = -3$ in $2x^2$ -	
	$2(-3)^{2} + 5(-3) + k = 0 \therefore \\ 0 \therefore k = -3$	$.18 - 15 + k = 0$ $\therefore k + 3 =$
(9)	In $\Delta PQR, m \angle Q = 90$. If PR	-17 and $PO-8$ then
(3)	$QR = \dots$	$=$ 11 and 1 \approx $=$ 0, then
	(A) 15	(B) 13
	(C) 12.5	(D) 9
	Solution:(Correct Answer:A)
(10)	Find the area of a pentagon	-
	(1,5), (-2,4), (-3,-1), (2,-1)	, , , ,
	(A) 40	(B) 30
	(C) 20	(D) 10
	Solution:(Correct Answer:A	.)
	40	
(11)		4 in ratio $2:1$ and $A(3,8)$, then
	the coordinates of B are (A) $(0, 14)$	(B) (14,0)
	(C) (-14,0)	(D) $(0, -14)$
	Solution:(Correct Answer:A	
	(0,14)	,
(12)	If the zeros of cubic polynon	nial
(12)		$\neq 0; a, b, c, d \in R$ are α, β and γ
	then $\alpha^2\beta\gamma + \alpha\beta^2\gamma + \alpha\beta\gamma^2 =$	
	(A) $\frac{cd}{a^2}$	(B) $\frac{bc}{a^2}$
	(C) $\frac{bd}{a^2}$	(D) $\frac{ad}{a^2}$
	Solution:(Correct Answer:C	
	$ \begin{aligned} \alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2 &= \alpha \beta \gamma \\ &= -\frac{d}{a} \left(-\frac{b}{a} \right) = \frac{bd}{a^2} \end{aligned} $	$\gamma(lpha+eta+\gamma)$
(13)	If $x^2 + 6x + 10$ is divided by	x + 2, then the remainder is
	(A) -2	(B) 2
	(C) 6	(D) 4
	Solution:(Correct Answer:B)
(14)	$\ln \Delta ABC, m \angle B = 90, AB =$	
	AC = 3x - 1. Find the value	
	(A) 6	(B) 5
	(C) 4	(D) 2
	Solution:(Correct Answer:A In $\triangle ABC$, $m \angle B = 90$	<u>)</u>
	$\therefore AC^2 = AB^2 + BC^2$	
	$\therefore (3x-1)^2 = (2x+3)^2 + (3x+3)^2 + (3x+3)^$	$(x+2)^2$
	$\therefore 9x^{2} - 6x + 1 = 4x^{2} + 12x$ $\therefore 4x^{2} - 22x - 12 = 0$	$+9+x^2+4x+4$
	$\therefore 2x^2 - 11x - 6 = 0$	
	$\therefore 2x^2 - 12x + x - 6 = 0$	
	$\therefore 2x(x-6) + 1(x-6) = 0$	
	∴ (x - 6)(2x + 1) = 0 ∴ x - 6 = 0 or 2x + 1 = 0	
	$\therefore x = 6 \text{ or } x = -\frac{1}{2}$	_
	But, for $x = -\frac{1}{2}$, $AC = -\frac{1}{2}$	$\frac{5}{2}$ which is not possible.
	$\therefore x = 6$	

(15)	The roots of quadratic equati (A) -5 and -3	on $x^2 - 2x - 15 = 0$ are (B) 5 and 3		
	(C) -5 and 3	(D) $5 \text{ and } -3$		
	Solution:(Correct Answer:D) null			
(16)	In a two-digit number, the d digit at ten's place is y . then t (A) $10x + y$	igit at unit's place is x and the the number is		
	(C) $10(x+y)$	(D) $10y + x$		
	Solution:(Correct Answer:D))		
(17)	(17) 49 students in a class are alloted roll numbers from 1 to 49 Find a roll number such that the sum of all the roll number smaller than that is same as the sum of all the roll number greater than that.			
	(A) 40	(B) 35		
	(C) 30	(D) 25		
2	Solution: (Correct Answer:B) Suppose the roll number poss Then, by the given property, the sum of roll numbers small = the sum of roll numbers gravely $\therefore 1+2+3+\ldots+(n-1)=$ (n+1)+(n+2)+(n+3)- $\therefore \frac{(n-1)n}{2}=(1+2+\ldots+n)-$ $(1+2+3+\ldots+n)$ $\therefore \frac{(n-1)n}{2}=\frac{49\times50}{2}-\frac{n(n+1)}{2}$ $\therefore n(n-1)=49\times50-n(n)$ $\therefore n^2-n+n^2+n=49\times50$ $\therefore n^2=49\times25$ $\therefore n=7\times5$ $\therefore n=35$ Hence, the required roll numbers	sessing the given property is n . ler than n eater than n . + $+ \dots + 49$ $+ (n + 1) + \dots + 49)$ + 1)		
(18)	if the equation has a solution $\frac{1}{x+1} + \frac{2}{x+2} = \frac{4}{x+4}$; $x \neq 1, -2$ (A) $1 + 7\sqrt{3}, 1 - 7\sqrt{3}$	(B) $12 + 2\sqrt{3}, 12 - 2\sqrt{3}$		
	(C) $2 + 2\sqrt{3}, 2 - 2\sqrt{3}$	(D) $4 + \sqrt{14}, 4 - \sqrt{14}$		
	Solution:(Correct Answer:C) $2 + 2\sqrt{3}, 2 - 2\sqrt{3}$			
(19)	For a given $A.P., S_{10} = 50$ an (A) 4	d $a = 0.5$. Then, $d = \dots$		
	(C) 2	(D) 1		
	Solution:(Correct Answer:D) $S_n = \frac{1}{2}n[2a + (n-1)d]$ $\therefore S_{10} = \frac{1}{2} \times 10[1 + (9)d]$ $\therefore 50 = 5(1+9d) \therefore 10 = 1$			
(20)	In which ratio $P(-4,3)$ divide $A(1,-2)$ and $B(-6,5)$ from $A(1,-2)$			
	(A) 6:2	(B) 5 : 2		
	(C) 5:6	(D) 1:3		

Solution:(Correct Answer:	В)			es of the poly	ynomial $2x^2 + 7x - 4$ is
5:2			(A) 2		(B) $-\frac{1}{2}$
(21) If $(3,2)$ is one of the solution	ns of $5x - ay = 7$, then		(C) $\frac{1}{2}$		(D) -2
a = (A) 4	(B) 6		Solution:(Correction) We have $p(x) =$		-
(C) 12	(D) 1		(a) $p(2) = 2(2)^2$		4
Solution:(Correct Answer:			$= 8 + 14 - 4$ $= 18 \neq 0$		
4	7		(b) $p\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right) = 2\left(-\frac{1}$	$\left(-\frac{1}{2}\right)^{2} + \frac{7}{7}\left(-\frac{1}{2}\right)^{2}$	$(-\frac{1}{2}) - 4$
(22) On dividing $p(x) = 3x^3 - 6$	$x^2 + 5x - 10$ by $(x - 2)$, find the		$= 2 \times \frac{1}{4} - \frac{7}{2} - 4 \\ = -3 - 4$	$=\frac{1}{2}-\frac{7}{2}-$	4
remainder.			$= -7 \neq 0$	2 - (1)	
(A) 1	(B) 2		(C) $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)$ = 2 × $\frac{1}{4}$ + $\frac{7}{2}$ - 4	$\left(\frac{1}{2} \right)^{-} + 7 \left(\frac{1}{2} \right) - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{7}{2} + \frac{7}{2$	4 = 4 - 4 = 0
(C) 3	(D) 0		(d) $p(-2) = 2(-2)$	$(2)^2 + 7(-2)$	- 4
Solution:(Correct Answer: 0	D)		= 8 - 14 - 4 = -4 As $p\left(\frac{1}{2}\right) = 0$, we	$-10 \neq 0$ e say that $\frac{1}{2}$	is a zero of the polynomial.
			Hence, $\frac{1}{2}$ is one of Hence, (c) is the	of the zero of	is a zero of the polynomial. of the polynomial $2x^2 + 7x - 4x^2$
(23) The number of interwoven the Atharva Veda) is:	isosceles triangles in Sriyantra (in				wei.
(A) 7	(B) 8		$\sqrt{10} \times \sqrt{15}$ is eq (A) $6\sqrt{5}$	ual to	(B) $10\sqrt{5}$
(C) 11	(D) 9		(C) $\sqrt{25}$		(D) $5\sqrt{6}$
Solution:(Correct Answer:	D)		Solution:(Correc	rt Δnswer•Γ	
The number of interwoven the Atharva Veda) is nine.	isosceles triangle in Sriyantra (in		-	$\sqrt{15} = \sqrt{10}$	$\sqrt{5 \times 15} = \sqrt{5 \times 2 \times 5 \times 3} = 5\sqrt{6}$
(24) is one of the zeros of		(30)	Find the zero of t	the polynon	nial: p(x) = 2x + 5
(A) 1	(B) 5		(A) 2		(B) 5
(C) −5	(D) −1		(C) $\frac{5}{2}$		(D) $\frac{-5}{2}$
Solution:(Correct Answer:	D)		Solution:(Correc		-
1			We have $p(x) =$ $\Rightarrow 2x + 5 = 0$ or		x) = 0
(25) Any point on the line $y = x$ (A) $(a, -a)$	is of the form (B) $(a, 0)$		Or $x = \frac{-5}{2}$. F :5	
(C) $(0, a)$	(D) (a, a)		Thus, a zero of 2:	-	
Solution:(Correct Answer:		,	If $(5x - 3)^2 = 25$	$bx^2 + kx + 9$	·
=	will have <i>x</i> and <i>y</i> coordinate		(A) -45		(B) 20
same. So, any point on the line y	-x is of the form (a, a)		(C) 15	-+ A	(D) -30
	= x is of the form (a, a)		Solution:(Correc -30	t Answer:D)
(26) A solid has(A) shape, size and location	(B) size and location	(22)	For each questio	n coloct the	proper option from four
(C) shape and location	(D) shape and size	(32)	•		tatement true : (Final answer
Solution:(Correct Answer:			only) $\sqrt{5^2 + 12^2}$ is a / a	an ni	umber.
shape, size and location			(A) irrational		(B) negative
(27) If $a + b + c = 9$ and $ab + bc$	$b = a^2 - 26$ find $a^2 + b^2 + a^2$		(C) fraction		(D) natural
(27) If $a + b + c = 9$ and $ab + bc$ (A) 81	$+ ca = 20$, find $a^{-} + b^{-} + c^{-}$. (B) 29		Solution:(Correc	ct Answer:D)
(C) 52	(D) 26		natural		
Solution:(Correct Answer:	B)	(33)			the cubes, find the value of :
We have that			$\left(\frac{1}{2}\right)^3 + \left(\frac{1}{3}\right)^3 - \left(\frac{1}{3}\right)^3$	$\left(\frac{5}{6}\right)^{\circ}$	(D) 5
$(a+b+c)^2 = a^2 + b^2 + c^2$ $\Rightarrow (a+b+c)^2 = (a^2+b^2)$			(A) $\frac{7}{12}$		(B) $\frac{5}{12}$
$\Rightarrow 9^2 = (a^2 + b^2 + c^2) + 2b^2$	(26)		(C) $-\frac{5}{12}$		(D) $-\frac{7}{12}$
[Putting the value of $a + b$ $\Rightarrow 81 = (a^2 + b^2 + c^2) + 5$			Solution:(Corrected Let $a = \frac{1}{2}, b = \frac{1}{2}$.)
$\Rightarrow (a^2 + b^2 + c^2) = 81 - 52$			Let $a = \frac{1}{2}, b = \frac{1}{3}$ $\therefore a + b + c =$	$\frac{1}{2} + \frac{1}{3} - \frac{6}{6}$	

$$= \frac{3+2-5}{6} = \frac{0}{6} = 0$$

$$\Rightarrow a^{3} + b^{3} + c^{3} = 3abc$$

$$\therefore (\frac{1}{2})^{3} + (\frac{1}{3})^{3} - (\frac{5}{6})^{3} = (\frac{1}{2})^{3} + (\frac{1}{3})^{3} + (-\frac{5}{6})^{3}$$

$$= 3 \times \frac{1}{2} \times \frac{1}{3} (-\frac{5}{6}) = -\frac{5}{12}$$

(34) If $x^2 + kx + 6$	=(x+2)(x+3) for all x , then the value of k is
(A) 5	(B) 1
(C) −1	(D) 3

Solution:(Correct Answer:A)

	Solution:(Correct Answer:A)		
(35) Write the degree of each of the following polynomials $ax^3 + bx^2 + cx + d$			
	(A) 7	(B) 3		
	(C) 11	(D) 15		
	Solution:(Correct Answer:B 3)		
(36	5) If $2^{x-2} \cdot 3^{2x-6} = 36$, then find	d <i>x</i> .		
	(A) 14	(B) 6		
	(C) 4	(D) 8		
	Solution:(Correct Answer:C)		
(37) The product $\sqrt[3]{2}\cdot\sqrt[4]{2}\cdot\sqrt[12]{32}$	equals		
	(A) $\sqrt[12]{2}$	(B) $\sqrt{2}$		
	(C) 2	(D) $\sqrt[12]{32}$		
	Solution:(Correct Answer:C)			
	We have, $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} = 2^{\frac{1}{2}} \times 2^{\frac{1}{4}} \times 2^{\frac{1}{4}} \times 2^{\frac{1}{3} + \frac{1}{4} + \frac{5}{12}} = 2^{\frac{4+3+5}{12}} = 2^{\frac{12}{12}}$ Hence, (c) is the correct answer	$=2^{1}=2$		
(38) In ancient India, altars [or vedis] with combinations of shapes like rectangles. triangles and trapeziums were required for				
	(A) household rituals	(B) educational programme		
	(C) public worship	(D) Vedic rituals		

Solution:(Correct Answer:C) public worship

- public worship
- (39) A point both of whose coordinates are negative will lie in(A) *III* quadrant(B) *I* quadrant
 - (C) II quadrant (D) IV quadrant

Solution:(Correct Answer:A)

A point whose both of the coordinate are negative will lie in the *III* quadrant.

(40) Evaluate

$(1002)^{-1}$	
(A) 1005041	(B) 1003665
(C) 1004004	(D) 100254

Solution:(Correct Answer:C)

1004004

Mathematics - Section B (NUMERIC)

(41) The eighth term of an AP is half its second term and the eleventh term exceeds one third of its fourth term by 1. Find the $15^{\rm th}$ term.

Solution:

```
Let a and d be the first term and common difference of an
AP respectively.
Now, by given condition, a_8 = \frac{1}{2}a_2
\Rightarrow a + 7d = \frac{1}{2}(a+d) \left[ \because a_n = a + (n-1)d \right]
\Rightarrow 2a + 14d = a + d
\Rightarrow a + 13d = 0 \dots (i)
and a_{11} = \frac{1}{3}a_4 + 1
\Rightarrow a + 10d = \frac{1}{3}[a + 3d] + 1
\Rightarrow 3a + 30d = a + 3d + 3
\Rightarrow 2a + 27d = 3 \dots (ii)
From Eqs. (i) and (ii),
2(-13d) + 27d = 3
-26d + 27d = 3
d = 3
From Eq. (i),
a + 13(3) = 0
a = -39
a_{15} = a + 14d = -39 + 14(3)
= -39 + 42 = 3
```

(42) Had Ajita scored 10 more marks in her mathematics test out of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she get in the test?

Solution:

Let her actual marks be xTherefore, $9(x + 10) = x^2$ i.e., $x^2 - 9x - 90 = 0$ i.e., $x^2 - 15x + 6x - 90 = 0$ i.e., x(x - 15) + 6(x - 15) = 0i.e. (x + 6)(x - 15) = 0Therefore, x = -6 or x = 15since x is the marks obtained, $x \neq -6$. Therefore, x = 15. So, Ajita got 15 marks in her mathematics test.

(43) The perpendicular distance of the point (6,2) from the $X-{\rm axis}$ is.....

Solution:

- 2
- (44) Find the HCF and LCM of 6,72 and 120, using the prime factorisation method.

Solution:

We have $6 = 2 \times 3, 72 = 2^3 \times 3^2, 120 = 2^3 \times 3 \times 5$ Here, 2^1 and 3^1 are the smallest powers of the common factors 2 and 3, respectively. So, $HCF(6, 72, 120) = 2^1 \times 3^1 = 2 \times 3 = 6$ $2^3, 3^2$ and 5^1 are the greatest powers of the prime factors 2, 3 and 5 respectively involved in the three numbers. So, $LCM(6, 72, 120) = 2^3 \times 3^2 \times 5^1 = 360$

(45) In a competitive examination, one mark is awarded for each correct answer while $\frac{1}{2}$ mark is deducted for every wrong answer. Jayanti answered 120 questions and got 90 marks. How many questions did she answer correctly?

Solution:

Let x be the number of correct answers of the questions in a competitive examination, then (120 - x) be the number of wrong answers of the questions.

Then, by given condition, $x \times 1 - (120 - x) \times \frac{1}{2} = 90$ $x - 60 + \frac{x}{2} = 90$ $\frac{3x}{2} = 150$ $x = \frac{150 \times 2}{3} = 50 \times 2 = 100$ Hence, Jayanti answered correctly 100 questions.

(46) Find the value of a:

 $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$

Solution:

$$\begin{split} L.H.S. &= \frac{5+2\sqrt{3}}{7+4\sqrt{3}} = \frac{5+2\sqrt{3}}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}} \\ &= \frac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7)^2-(4\sqrt{3})^2} \\ &= \frac{35-20\sqrt{3}+14\sqrt{3}-24}{49-48} \\ &= \frac{11-6\sqrt{3}}{1} = 11-6\sqrt{3} \\ \text{Now, } 11-6\sqrt{3} = a-6\sqrt{3} \\ a &= 11 \end{split}$$

(47) Find the value of the polynomial $5x - 4x^2 + 3$ at x = 0.

Solution:

 $p(x) = 5x - 4x^2 + 3$ $p(0) = 5(0) - 4(0)^2 + 3$ = 3

(48) Multiply $5\sqrt{3}$ and $4\sqrt{12}$.

Solution:

120

(49) Fill in the blanks so as to make each of the following statements true (Final answer only) $(729)^{\frac{1}{3}} = \dots$

Solution:

9

(50) Find the value $\frac{8\frac{1}{3} \times 16\frac{1}{3}}{32^{-\frac{1}{3}}}$

Solution:

16

Science - Section A (MCQ)

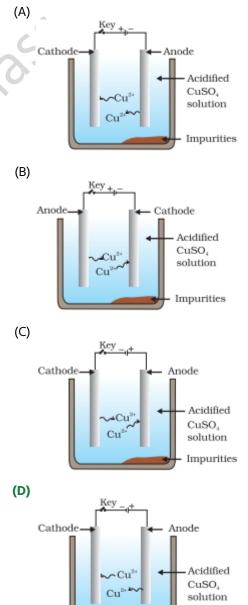
- (51) During refining of copper by electrolysis; copper deposits at the
 - (A) cathode(B) Electrolytic solution(C) anode(D) bottom of anode

 - Solution:(Correct Answer:A)
- (52) Which among the following elements has the largest atomic radii ?
 (A) K
 (B) Mg
 - (C) Na (D) Ca
 - Solution:(Correct Answer:A)

- (53) Lack of oxygen in muscles often leads to cramps among cricketers. This results due to
 - (A) conversion of pyruvate to lactic acid
 - (B) conversion of pyruvate to glucose
 - (C) non conversion of glucose to pyruvate
 - (D) conversion of pyruvate to ethanol

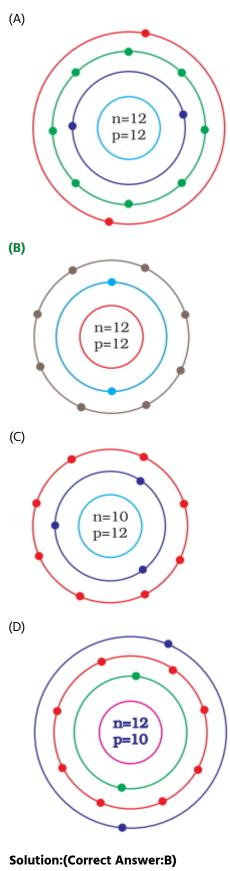
Solution:(Correct Answer:A)

- (54) A solution turns red litmus blue, its pH is likely to be (A) 1 (B) 4
 - (C) 10 (D) 5


Solution:(Correct Answer:C)

Bases turn red litmus blue and acids turn blue litmus red. Basic solution has a pH value more than 7. Since the solution turns red litmus blue, its pH is likely to be 10.

- (55) Which of the following metals exists in nature in liquid state?
 - (A) Copper (B) Iron
 - (C) Aluminium (D) Gallium


Solution:(Correct Answer:D)

(56) Which one of the following figures correctly describes the process of electrolytic refining ?

Impurities

	Solution:(Correct Answer:	D)		Solution:(Correct Answer:	В)
(57)	Which is the correct seque	nce of air passage during			
	inhalation? (A) Nostrils $ ightarrow$ larynx $ ightarrow$ pharynx $ ightarrow$ trachea $ ightarrow$ lungs		(66)		acids to give salt and hydrogen acids does not give hydrogen
		ea $ ightarrow$ pharynx $ ightarrow$ larynx $ ightarrow$ alveoli		gas on reacting with metals	
	(C) Nostrils \rightarrow pharynx \rightarrow I	arynx $ ightarrow$ trachea $ ightarrow$ alveoli		(A) H_2SO_4	(B) <i>HCl</i>
	(D) larynx \rightarrow nostrils \rightarrow pha	arynx $ ightarrow$ lungs		(C) <i>HNO</i> ₃	(D) All of these
	Solution:(Correct Answer:	C)			
(58)	Which gas is released wher	acid reacts with metal?		Solution:(Correct Answer:	C)
(50)	(A) Dioxygen	(B) Dihydrogen			
	(C) Dinitrogen	(D) Diclorine	(67)	Pentane has the molecular t	
	Solution:(Correct Answer:	B)		(A) 5 covalent bonds	(B) 12 covalent bonds
(50)	Which one of the following	types of medicines is used for		(C) 16 covalent bonds	(D) 17 covalent bonds
	treating indigestion ?	types of medicines is used for			
	(A) Antibiotic	(B) Antacid		Solution:(Correct Answer:	
	(C) Analgesic	(D) Antiseptic			
	Solution:(Correct Answer: Antacid is used for treating	-	(68)	Which of the following mor (A) $CH_3 - CH_3$	nomers is in polythene? (B) $CH_3 - CH = CH - CH$
	Which of the following sub (A) Cryolite	stances is hygroscopic? (B) Feldspar		(C) $CH_2 = CH_2$	(D) $CH \equiv CH$
	(C) Anhydrous calcium chloride	(D) Slag		Solution:(Correct Answer:	c)
	Solution:(Correct Answer:	C)		0	
(61)	According to Bronsted-Low	vrv acid-base theory, the	(69)	pH + pOH = ? (A) 7	(B) 0
(0.)	substance which donates a	proton (H^+) to other substance		(C) 14	(D) 10
	is called (A) a neutral solution	(B) a base			
	(C) an acid	(D) a phenolic solution		Solution:(Correct Answer:	C)
	Solution:(Correct Answer:	., .			-,
(62)	What is used to preserve th	ne dead bodies of animals?	(70)	Which of following metals i	s soft enough to be cut easily
. ,	(A) Rectified Spirit	(B) Formalin		with knife?	
	(C) Acetic acid	(D) Acetone		(A) Silicone	(B) Sodium
	Solution:(Correct Answer:	B)		(C) Copper	(D) Aluminium
(63)	Which gas is responsible fo (A) Dihydrogen	r acid rain? (B) Sulfur dioxide		Solution:(Correct Answer:	B)
	(C) Ammonia	(D) Dinitrogen			
	Solution:(Correct Answer:	В)	(71)	Amphibians do not have the (A) Three chambered heart	-
(64)	What is the reaction to for	n soan known as?		(C) Scales	(D) Mucus glands
(04)	(A) Esterification	(B) Saponification			
	(C) Polymerisation	(D) hydrogenation		Solution:(Correct Answer:	C)
	Solution:(Correct Answer:	B)		Three chambered heart is fo	ound in amphibians. Lungs are
(65)	5) The element with atomic number 14 is hard and forms acidic oxide and a covalent halide. To which of the following			present in adults and gills a gland is present on skin of a	re present in tadpoles. Mucus amphibians.
	Catedonies doos the element				
	categories does the elemer (A) Metal	(B) Metalloid	(72)	Identify the Mg^{2+} ion from	the Fig. where, n and n

Electronic configuration of Mg atom is : 2, 8, 2 So, electronic configuration of Mg^{2+} ion is : 2, 8.

(73) Calculate the molecular masses of H_2 , O_2 and Cl_2 .

(A) 9 u, 36 u and 84 u

- (B) 6 u, 18 u and 36 u
- (C) 2u, 32u and 71u
- (D) 12 u, 36 u and 84 u

Solution:(Correct Answer:C)

(i) Molecular mass of H_2 (hydrogen) = Atomic mass of hydrogen $\times 2$ = $1 \times 2 = 2 u$ (ii) Molecular mass of O_2 (oxygen)

- = Atomic mass of oxygen $\times 2$
- $= 16 \times 2 = 32 u$
- $\left(iii\right)$ Molecular mass of Cl_2 (chlorine)
- = Atomic mass of chlorine $\times 2$
- $= 35.5 \times 2 = 71 \, u$
- (74) Corals are
 - (A) Poriferans attached to some solid support
 - (B) Cnidarians, that are solitary living
 - (C) Poriferans present at the sea bed
 - (D) Cnidarians that live-in colonies

Solution:(Correct Answer:D)

Cnidarians that live-in colonies

- (75) Compute the difference in masses of one mole each of aluminium atoms and one mole of its ions. (Mass of an electron is 9.1×10^{-28} g). Which one is heavier ?
 - (A) 0.0016 g (B) 0.0025 g
 - (C) 0.0035 g (D) 0.0055 g

Solution:(Correct Answer:A)

Mass of $1\,M$ of aluminium atom = the molar mass of aluminium = $27\,g\,mol^{-1}$

An aluminium atom needs to lose three electrons to become an ion, Al^{3+}

For one mole of Al^{3+} ion, three moles of electrons are to best lost.

The mass of three moles of electrons

 $= 3 \times (9.1 \times 10^{-28}) \times 6.022 \times 10^{23} g$ = 27.3 × 6.022 × 10⁻⁵ g = 164.400 × 10⁻⁵ g

 $= 164.400 \times 10^{\circ} g$

 $= 0.0016 \, g$ Molar mass of

 $Al^{3+} = (27 - 0.00164) g \, mol^{-1} = 26.998 g \, mol^{-1}$

Difference = 27 - 26.9984 = 0.0016 g

(76) Match items of column (A) with items of column (B)

()
Column (B)
(A) Angiosperms
(B) Gymnosperms
(C) Bryophytes
(D) Euglena
(E) Thallophyta
(F) Pteridophyta
(G) Fungi

- (A) (a) B; (b) A; (c) D; (d) C; (e) F; (f) E; (g) G
- (B) (a) B; (b) C; (c) D; (d) A; (e) E; (f) F; (g) G
- (C) (a) G; (b) C; (c) E; (d) A; (e) D; (f) F; (g) B
- (D) (a) B; (b) A; (c) D; (d) G; (e) F; (f) E; (g) C

Solution:(Correct Answer:A)

(a)-B ; (b)-A ; (c)-D ; (d)-C ; (e)-F ; (f)-E ; (g)-G.

- (77) Which of these is not related to endoplasmic reticulum?
 - (A) It can be the site of energy generation
 - (B) It transports materials between various regions in cytoplasm
 - (C) It behaves as transport channel for proteins between nucleus and cytoplasm
 - (D) It can be the site for some biochemical activities of the cell

Solution:(Correct Answer:A)

Energy generation is the function of mitochondria.

(78) Match items of column (A) with items of column (B)

$Column\left(A ight)$	Column (B)
(a) Pore bearing ani- mals	(A) Arthropoda
(b) Diploblastic	(B) Coelenterata
(c) Metameric segmen- tation	(C) Porifera
(d) Jointed legs	(D) Echinodermata
$\left(e\right)$ Soft bodied animals	(E) Mollusca
$\left(f ight)$ Spiny skinned animals	(F) Annelida

(A) (a) - C; (b) - A; (c) - F; (d) - B; (e) - D; (f) - E(B) (a) - C; (b) - B; (c) - F; (d) - A; (e) - E; (f) - D(C) (a) - B; (b) - C; (c) - F; (d) - E; (e) - A; (f) - D

(D) (a) - C; (b) - D; (c) - A; (d) - F; (e) - E; (f) - B

Solution:(Correct Answer:B)

(a) - C; (b) - B; (c) - F; (d) - A; (e) - E; (f) - D

- (79) Meena and Hari observed an animal in their garden. Hari called it an insect while Meena said it was an earthworm. Choose the character from the following which confirms that it is an insect.
 - (A) Bilateral symmetrical body
- (B) Cylindrical body(D) Body with little

segmentation

(C) Body with jointed legs

Solution:(Correct Answer:C)

Presence of jointed legs is a salient feature of arthropoda and insects belong to arthropoda.

(80) A gold sample contains 90% of gold and the rest copper. How many atoms of gold are present in one gram of this sample of gold ?

(A) 8.34×10^{21}	(B) 2.77×10^{21}
(C) 5.51×10^{21}	(D) 3.73×10^{21}

Solution:(Correct Answer:B)

One gram of gold sample will contain $\frac{90}{100} = 0.9 g$ of gold Number of moles of gold = $\frac{\text{mass of gold}}{\text{atomic mass of gold}}$ = $\frac{0.9}{197} = 0.0046$

One moles of gold contains N_A atoms = 6.022×10^{23} $\therefore 0.0046$ mole of gold will contain = $0.0046 \times 6.022 \times 10^{23}$ = 2.77×10^{21}

(81) Pteridophyta do not have	
-------------------------------	--

(A) root	(B) stem
(C) leaves	(D) flowers

Solution:(Correct Answer:D)

Flower are present only in angiosperms.

- (82) Which of the following statement is always correct ?
 - (A) An atom has equal number of electrons and protons.(B) An atom has equal number of electrons and neutrons.
 - (C) An atom has equal number of protons and neutrons.
 - (D) An atom has equal number of electrons, protons and neutrons.

Solution:(Correct Answer:A)

An atom has equal number of electrons and protons.

(83) For the following statements, write T for True and ${\cal F}$ for False.

(a) J.J. Thomson proposed that the nucleus of an atom contains only nucleons.

(b) A neutron is formed by an electron and a proton combining together. Therefore, it is neutral.

(c) The mass of an electron is about $\frac{1}{2000}$ times that of proton.

 $\left(d\right)$ An isotope of iodine is used for making tincture iodine, which is used as a medicine.

(A) (a) - (T); (b) - (F); (c) - (T); (d) - (F)

(B) (a) - (F); (b) - (T); (c) - (T); (d) - (F)

(C) (a) - (F); (b) - (F); (c) - (T); (d) - (F)

(D) (a) - (T); (b) - (F); (c) - (F); (d) - (T)

Solution:(Correct Answer:B)

- (a) False
- (b) True
- (c) True
- (d) False
- (84) Calculate the number of molecules of sulphur (S_8) present in 16 g of solid sulphur.

(A) 5.59×10^{23}	(B) 0.376×10^{23}
(C) 37.6×10^{23}	(D) 3.76×10^{23}

Solution:(Correct Answer:C)

Molar mass of sulphur $(S_8) = 32 \times 8 = 256 g$ Number of S_8 molecules in 256 g of solid sulphur $= 6.022 \times 10^{23}$ Number of S_8 molecules in 16 g of solid sulphur $= \frac{6.022 \times 10^{23}}{256} \times 16 g$ $= 3.76 \times 10^{23}$ molecules

- (85) The proteins and lipids, essential for building the cell membrane, are manufactured by
 - (A) mitochondria (B) golgi apparatus
 - (C) plasma membrane (D) endoplasmic reticulum

Solution:(Correct Answer:D)

Endoplasmic reticulum synthesise both lipids and proteins. However, *RER* mainly synthesise proteins and *SER* mainly synthesise lipids.

(86) Match the column (A) with the column (B)

	$Column\left(A ight)$	$Column\left(B ight)$
	(a) Parenchyma	$\left(i ight)$ Thin walled, packing cells
	(b) Photosynthesis	(ii) Carbon fixation
	(c) Aerenchyma	(<i>iii</i>) Localized thicken- ings
	(d) Collenchyma	(iv) Buoyancy
	(e) Permanent tissue	(v) Sclerenchyma

(A) a - (i); b - (ii); c - (iv); d - (iii); e - (v)
(B) a - (i); b - (ii); c - (v); d - (iii); e - (iv)
(C) a - (ii); b - (iii); c - (iv); d - (i); e - (v)

(D)
$$a - (iii)$$
; $b - (i)$; $c - (iv)$; $d - (ii)$; $e - (v)$

Solution:(Correct Answer:A)

 $a-\left(i\right)$; $b-\left(ii\right)$; $c-\left(iv\right)$; $d-\left(iii\right)$; $e-\left(v\right)$

- (87) The 'Origin of Species' is written by
 - (A) Linnaeus (B) Darwin
 - (C) Hackel (D) Whittaker

Solution:(Correct Answer:B)

Darwin

(88) Differentiation in segmental fashion occurs in

(A) Leech	(B) Starfish

(C) Snails (D) Ascaris

Solution:(Correct Answer:A)

Leech belongs to annelida which show segmentation in body.

- (89) Well defined nucleus is absent in
 - (A) blue green algae (B) diatoms
 - (C) algae
 - (D) yeast

Solution:(Correct Answer:A)

Blue green algae belong to monera which are prokaryotes and hence welldefined nucleus in absent in them.

- (90) Following are a few definitions of osmosis Read carefully and select the correct definition
 - (A) Movement of solvent molecules from its higher concentration to lower concentration
 - (B) Movement of water molecules from a region of higher concentration to a region of lower concentration through a semipermeable membrane
 - (C) Movement of solvent molecules from higher concentration to lower concentration of solution through a permeable membrane
 - (D) Movement of solute molecules from lower concentration to higher concentration of solution through a semipermeable membrane

Solution:(Correct Answer:B)

Movement of water molecules from a region of higher concentration to a region of lower concentration through a semipermeable membrane (91) 10 mL of a solution of NaOH is found to be completely neutralised by 8 mL of a given solution of HCl. If we take 20 mL of the same solution of NaOH, the amount of HClsolution (the same solution as before) required to neutralise it will be mL

Solution:

 $16\,mL$ of HCl solution will be required.

(92) Write down the electron distribution of chlorine atom. How many electrons are there in the *L* shell ? (Atomic number of chlorine is 17).

Solution:

2, 8, 7. The L shell has eight electrons

(93) The ion of an element has 3 positive charges. Mass number of the atom is 27 and the number of neutrons is 14. What is the number of electrons in the ion ?

Solution:

Mass number =27 and number of neutrons =14Hence, number of electrons in atom =27-14=13Now, ion has 3 positively charges, so number of electrons in the ion =13-3=10

(94) Calculate the number of neutrons present in the nucleus of an element X which is represented as ${}^{31}_{15}X$.

Solution:

Mass number = No. of protons + No. of neutrons = 31 \therefore Number of neutrons = 31 – number of protons = 31 - 15 = 16

(95) Number of valence electrons in Cl^- ion are :

Solution:

8

(96) If K and L shells of an atom are full, then what would be the total number of electrons in the atom ?

Solution:

The maximum capacity of K shell is 2 electrons and L shell can accommodate maximum 8 electrons in it. Therefore, there will be ten electrons in the atom.